zoukankan      html  css  js  c++  java
  • uva 1395 瓶颈树

    Given an undirected weighted graph G , you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E) , where V is a set of vertices {v1, v2,..., vn} and E is a set of undirected edges {e1, e2,..., em} . Each edge e $ in$ E has its weight w(e) .

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n - 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n - 1 edges of T .

    epsfbox{p3887a.eps}

    For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5} . The weights of the edges are w(e1) = 3 , w(e2) = 5 , w(e3) = 6 , w(e4) = 6 , w(e5) = 7 as shown in Figure 5(b).

    =6in epsfbox{p3887b.eps}

    There are several spanning trees for G . Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb , Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input 

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.


    n m
    a1 b1 w1
    $ vdots$
    am bm wm


    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.


    n is the number of the vertices and m the number of the edges. You can assume 2$ le$n$ le$100 and 0$ le$m$ le$n(n - 1)/2 . ak and bk (k = 1,..., m) are positive integers less than or equal to n , which represent the two vertices vak and vbk connected by the k -th edge ek . wk is a positive integer less than or equal to 10000, which indicates the weight of ek . You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output 

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1' should be printed. An output should not contain extra characters.

    Sample Input 

    4 5 
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6 
    1 2 10 
    1 3 100 
    1 4 90 
    2 3 20 
    2 4 80 
    3 4 40 
    2 1 
    1 2 1
    3 0 
    3 1 
    1 2 1
    3 3 
    1 2 2
    2 3 5 
    1 3 6 
    5 10 
    1 2 110 
    1 3 120 
    1 4 130 
    1 5 120 
    2 3 110 
    2 4 120 
    2 5 130 
    3 4 120 
    3 5 110 
    4 5 120 
    5 10 
    1 2 9384 
    1 3 887 
    1 4 2778 
    1 5 6916 
    2 3 7794 
    2 4 8336 
    2 5 5387 
    3 4 493 
    3 5 6650 
    4 5 1422 
    5 8 
    1 2 1 
    2 3 100 
    3 4 100 
    4 5 100 
    1 5 50 
    2 5 50 
    3 5 50 
    4 1 150 
    0 0
    

    Sample Output 

    1 
    20 
    0 
    -1 
    -1 
    1 
    0 
    1686 
    50

    参考了大神题解

    因为kruskal求出的mst中最大边权最小,所以枚举最小边权,然后求差值即可。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<vector>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<map>
    #include<stack>
    
    using namespace std;
    
    #define LL long long
    #define UINT unsigned int
    #define MAX_INT 0x7fffffff
    #define cint const int
    
    #define INF 100000000
    #define MAXN 111
    #define MAXM 10000
    
    struct edge{
        int u, v, w;
        bool operator < (const edge &rhs)const{
            return w < rhs.w;
        }
    }e[MAXM];
    int p[MAXN], n, m;
    
    int finds(int x){
        if(p[x]==-1) return x;
        return (p[x]=finds(p[x]));
    }
    
    bool mst(int k, int &dif){
        int i, j;
        fill_n(p+1, n, -1);     dif=0;
        for(i=k, j=0; i<m; i++){
            int fx = finds(e[i].u), fy = finds(e[i].v), w = e[i].w;
            if(fx!=fy){
                p[fx] = fy;
                dif = max(dif, w);
                if(++j == n-1){
                    dif = dif - e[k].w;
                    return true;
                }
            }
        }
        return false;
    }
    
    int main(){
    //    freopen("C:\Users\Administrator\Desktop\in.txt","r",stdin);
        while(scanf(" %d %d", &n, &m)==2 && n){
            int i, u, v, w;
            for(i=0; i<m; i++){
                scanf(" %d %d %d", &u, &v, &w);
                e[i]=(edge){u, v, w};
            }
            sort(e, e+m);
            int ans = INF, dif;
            for(i=0; i<m; i++){
                if(mst(i, dif)) ans = min(ans, dif);
                else break;
            }
            if(ans == INF) ans=-1;
            printf("%d
    ", ans);
        }
        return 0;
    }
    



  • 相关阅读:
    【Vue】详解Vue生命周期
    千万不要用window自带文本编辑器编辑配置文件或者代码
    [其它]iOS 13 正式版发布 iPhone 6s或更新型号均可升级
    [转]解决ubuntu16.04 ‘E: 无法获得锁 /var/lib/dpkg/lock-frontend
    [golang]使用gomail发邮件(在Go中发送电子邮件的最佳方式)
    [golang]按图片中心旋转后的新图左顶点和原图左顶点的偏移量计算
    分布式CAP定理,为什么不能同时满足三个特性?
    Java如何运行一个class文件的main方法
    数据库的四大特性以及四个隔离级别和引发的问题
    Redis为什么可以支持那么大的并发访问量?为什么redis没有单点并发瓶颈?
  • 原文地址:https://www.cnblogs.com/ramanujan/p/3375334.html
Copyright © 2011-2022 走看看