Description
Consider equations having the following form:
a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.
It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.
Determine how many solutions satisfy the given equation.
a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.
It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.
Determine how many solutions satisfy the given equation.
Input
The
input consists of several test cases. Each test case consists of a
single line containing the 4 coefficients a, b, c, d, separated by one
or more blanks.
End of file.
End of file.
Output
For each test case, output a single line containing the number of the solutions.
Sample Input
1 2 3 -4
1 1 1 1
Sample Output
39088
0
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<vector> #include<cstdlib> #include<algorithm> using namespace std; #define LL long long #define ULL unsigned long long #define UINT unsigned int #define MAX_INT 0x7fffffff #define MAX_LL 0x7fffffffffffffff #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) int main(){ int a,b,c,d; while(scanf(" %d %d %d %d",&a,&b,&c,&d)==4){ if((a<0 && b<0 && c<0 && d<0) || (a>0 && b>0 && c>0 && d>0)){ printf("0 "); continue; } int i,j,k; LL ans=0; for(i=1; i<=100; i++) for(j=1; j<=100; j++) for(k=1; k<=100; k++){ int tmp=b*i*i + c*j*j + d*k*k; if(MIN(tmp,a) <0 && MAX(tmp,a)>0){ int post=MAX(tmp,-tmp), posa=MAX(a,-a); if(post%posa==0){ int x=(int)sqrt(0.5+post/posa); if(x*x == post/posa && x<=100) ans+=16; } } } printf("%lld ",ans); } return 0; }