zoukankan      html  css  js  c++  java
  • zoj 3690, 计数 dp , 快速幂

    Choosing number

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

    And you need to calculate how many ways they can choose the numbers obeying the rule.

    Input

    There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

    Output

    One line for each case. The number of ways module 1000000007.

    Sample Input

    4 4 1
    

    Sample Output

    216
    

    Author: GU, Shenlong
    Contest: ZOJ Monthly, March 2013

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<vector>
    #include<cstdlib>
    #include<algorithm>
    
    using namespace std;
    
    #define LL long long
    #define ULL unsigned long long
    #define UINT unsigned int
    #define MAX_INT 0x7fffffff
    #define MAX_LL 0x7fffffffffffffff
    #define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
    #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
    
    #define MOD 1000000007
    
    LL m,n,k;
    
    void pp(LL t[2][2],LL p[2][2]){
        LL i,j,k;
        LL c[2][2];
        memset(c,0,sizeof(c));
        for(i=0; i<2; i++)
            for(j=0; j<2; j++)
                for(k=0; k<2; k++)
                    c[i][j] =(c[i][j] + t[i][k] * p[k][j])%MOD;
        memcpy(p,c,sizeof(c));
    }
    
    LL mpow(LL f[2][2]){
        LL i,j;
        LL e[2][2]={k-1,k,m-k,m-k};
        n--;
        while(n){
            if(n&1) pp(e,f);
            n=n>>1;
            pp(e,e);
        }
        return (f[0][0] + f[1][0])%MOD;
    }
    
    int main(){
    //  fstream fin("C:\Users\Administrator\Desktop\in.txt",ios::in);
      //  freopen("C:\Users\Administrator\Desktop\in.txt","r",stdin);
       // LL n,m,k;
        while(scanf(" %lld %lld %lld",&n,&m,&k)==3){
            LL f[2][2]={k,0,m-k,0};
            printf("%lld
    ",mpow(f));
        }
    //  fin.close();
        return 0;
    }
    
  • 相关阅读:
    JAVA学习前应该了解
    JAVA帝国的诞生
    常用的快捷方式
    MarkDown学习
    运动检测
    图像分割
    感知机
    线性判别函数
    距离
    概率密度估计笔记——非参数估计
  • 原文地址:https://www.cnblogs.com/ramanujan/p/3413020.html
Copyright © 2011-2022 走看看