zoukankan      html  css  js  c++  java
  • Hadoop WordCount 小析

    word count 是hadoop的一个经典例子程序,代码如下:
     
    Test.java:
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
     
    public class Test{
     
      public static class TokenizerMapper
           extends Mapper<Object, Text, Text, IntWritable>{
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context
                        ) throws IOException, InterruptedException {
          StringTokenizer itr = new StringTokenizer(value.toString());
          while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
          }
        }
      }
     
      public static class IntSumReducer
           extends Reducer<Text,IntWritable,Text,IntWritable>{
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
                           ) throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
            sum += val.get();
          }
          result.set(sum);
          context.write(key, result);
        }
      }
     
      public static void main(String[] args) throws Exception {
                //configuration for the job
        Configuration conf = new Configuration();
        conf.addResource(new Path("/usr/local/hadoop/etc/hadoop/core-site.xml"));
        conf.addResource(new Path("/usr/local/hadoop/etc/hadoop/hdfs-site.xml"));
      
     
        Job job = new Job(conf, "word count");
        job.setJarByClass(Test.class);
        
        //set the mapper, combiner, reducer
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        
        //the key is type of Text
        job.setOutputKeyClass(Text.class);
        //the value is type of IntWritable
        job.setOutputValueClass(IntWritable.class);
        
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        otherArgs = new String[2];
        otherArgs[0]="/input";
        otherArgs[1]="/output";
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount <in> <out>");
          System.exit(2);
        }
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.out.println("Hello World");
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
    }
    
     
    其中,输入的文件有两个:
    test1.txt: Hello World Hello
    test2.txt: Hello Hadoop
     
    例子中通过三个过程最终的出了结果: map,combine和reduce
    1 map函数
      map函数使用StringTokenizer来分割单词,遍历每个单词,生成key,value对,比如对于test1.txt文件,map后得到的keyvalue对(三对)为<Hello,1>,<world,1>,<Hello,1>
     
    2 combine
      combiner作为本地reducer只接收到了map的本地输出,而来自不同文件的test1.txt和test2.txt不会由同一个map输出到combiner,combine的步骤是为了节省空间。
      比如,test1.txt的map的结果经过combiner,得到的结果是(两对):<Hello, 2>,<world, 1>。
     
    3 reduce函数
      reduce函数接收到了combiner的结果,做最后的处理,最终得到<Hello,3>,<world,1>,<Hadoop,1>
     
    例子中的Mapper类:TokenizerMapper继承了Mapper<KIN, VIN, KOUT, VOUT>。Mapper子类必须实现void map(K, V, Context)方法,每处理一个<K, V>,交由Context类来处理,一般情况下有Context.write()来写结果。
    例子中的Reducer类:IntSumReducer继承了Reducer<KIN, VIN, KOUT, VOUT>。Reducer子类必须实现void reduce(K, V, Iterable<V> values, Context context)方法,每处理一个<K, List of V>,交由Context类来处理,一般情况下有Context.write()来写结果。
     
    最终得到结果:
    Hello 3
    world 1
    Hadoop 1
  • 相关阅读:
    有序矩阵中的第 k 个最小数组和
    查找和最小的K对数字
    前 K 个高频元素
    621. 任务调度器
    407. 接雨水 II
    c语言表达式求值 中缀表达式转后缀表达式 求值
    42. 接雨水
    MySQL高级特性——绑定变量
    MySQL高级特性之分区表
    MySQL优化特定类型的查询
  • 原文地址:https://www.cnblogs.com/rambot/p/3622130.html
Copyright © 2011-2022 走看看