word count 是hadoop的一个经典例子程序,代码如下:
Test.java:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Test{ public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>{ private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { //configuration for the job Configuration conf = new Configuration(); conf.addResource(new Path("/usr/local/hadoop/etc/hadoop/core-site.xml")); conf.addResource(new Path("/usr/local/hadoop/etc/hadoop/hdfs-site.xml")); Job job = new Job(conf, "word count"); job.setJarByClass(Test.class); //set the mapper, combiner, reducer job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); //the key is type of Text job.setOutputKeyClass(Text.class); //the value is type of IntWritable job.setOutputValueClass(IntWritable.class); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); otherArgs = new String[2]; otherArgs[0]="/input"; otherArgs[1]="/output"; if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.out.println("Hello World"); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
其中,输入的文件有两个:
test1.txt: Hello World Hello
test2.txt: Hello Hadoop
例子中通过三个过程最终的出了结果: map,combine和reduce
1 map函数
map函数使用StringTokenizer来分割单词,遍历每个单词,生成key,value对,比如对于test1.txt文件,map后得到的keyvalue对(三对)为<Hello,1>,<world,1>,<Hello,1>
2 combine
combiner作为本地reducer只接收到了map的本地输出,而来自不同文件的test1.txt和test2.txt不会由同一个map输出到combiner,combine的步骤是为了节省空间。
比如,test1.txt的map的结果经过combiner,得到的结果是(两对):<Hello, 2>,<world, 1>。
3 reduce函数
reduce函数接收到了combiner的结果,做最后的处理,最终得到<Hello,3>,<world,1>,<Hadoop,1>
例子中的Mapper类:TokenizerMapper继承了Mapper<KIN, VIN, KOUT, VOUT>。Mapper子类必须实现void map(K, V, Context)方法,每处理一个<K, V>,交由Context类来处理,一般情况下有Context.write()来写结果。
例子中的Reducer类:IntSumReducer继承了Reducer<KIN, VIN, KOUT, VOUT>。Reducer子类必须实现void reduce(K, V, Iterable<V> values, Context context)方法,每处理一个<K, List of V>,交由Context类来处理,一般情况下有Context.write()来写结果。
最终得到结果:
Hello 3
world 1
Hadoop 1