zoukankan      html  css  js  c++  java
  • XGBoost的基本原理推导

    (原创)

    本文讨论XGBoost的原理

    1.目标函数

    xgboost需要优化的目标函数分为两部分,

    一部分是样本的损失函数(下式红色部分),另一部分是对模型复杂程度的正则罚项(下式蓝色部分,下式的基模型为cart):

     

     2.梯度提升方法

    t次迭代的yi预测值可以由第t-1次的预测值,加上一个第t轮新模型的预测值:

     

    带入1中目标函数即是:

     

    对上面红框部分看成 x+x ,在x点泰勒展开,并展开到二阶项,即得下式:

     

    注意到蓝色部分是常值(因为上一轮预测值已确定),不影响函数优化,可以去掉得到下面函数:

     

    这是general的目标优化函数,接下来以基础决策树为基模型为例继续推导,

    带入决策树模型的正则罚项得到下面式子:

    由于左边部分是针对样本的,而正则罚项是基于叶子节点的,这时候为了两者可以合并,做一个技巧处理:遍历样本转换为遍历叶子节点,因为样本的f会落在某个叶子节点上,因此得到下式:

    至此,可以看出上式式关于Wj的二次函数,那么很容易得到最优点(-b/2a)和最值((4ac-b^2/4a):

     

     

    这个最值也是衡量该树质量的量化标准,

    同时,用这个值的变化量来度量某颗树分割为左右子树的效果好坏,即下式:

     

     

  • 相关阅读:
    二分查找法
    AES算法工具类
    SHA加密算法工具类
    使用SQL创建唯一索引
    springboot 启动类CommandLineRunner(转载)
    MD5加密算法工具类
    Android 通过Socket 和服务器通讯
    android 网络连接判断
    android 文件上传,中文utf-8编码
    github打不开问题
  • 原文地址:https://www.cnblogs.com/randomstring/p/15707049.html
Copyright © 2011-2022 走看看