- tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理
- https://github.com/tensorflow/tensorflow/issues/3332
- 这里暂时看各种框架api实现,相比于普通卷积(卷积操作详解)的高效实现,分组卷积怎么高效实现待研究!
- A normal convolutional layer. Yellow blocks represent learned parameters, gray blocks represent feature maps/input images (working memory).
- A convolutional layer with 2 filter groups. Note that each of the filters in the grouped convolutional layer is now exactly half the depth, i.e. half the parameters and half the compute as the original filter.
tensorflow实现:
depthwise_conv2d_native: for k in 0..in_channels-1 for q in 0..channel_multiplier-1 output[b, i, j, k * channel_multiplier + q] = sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] * filter[di, dj, k, q] depthwise_conv2d: output[b, i, j, k * channel_multiplier + q] = sum_{di, dj} filter[di, dj, k, q] * input[b, strides[1] * i + rate[0] * di, strides[2] * j + rate[1] * dj, k] conv2d: output[b, i, j, k] = sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * filter[di, dj, q, k]
- 普通卷积和深度可分离卷积实现,使用depthwise_conv2d_native原始的貌似可以辅助实现分组卷积,速度慢;depthwise_conv2d使用矩阵实现;
pytorch实现:
- torch.nn.
Conv2d
(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
- groups
controls the connections between inputs and outputs. in_channels
and out_channels
must both be divisible by groups
. For example,
At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters, of size: leftlfloorfrac{out\_channels}{in\_channels} ight floor⌊in_channelsout_channels⌋.
caffe实现:
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" # learning rate and decay multipliers for the filters param { lr_mult: 1 decay_mult: 1 } # learning rate and decay multipliers for the biases param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 # learn 96 filters kernel_size: 11 # each filter is 11x11 stride: 4 # step 4 pixels between each filter application weight_filler { type: "gaussian" # initialize the filters from a Gaussian std: 0.01 # distribution with stdev 0.01 (default mean: 0) } bias_filler { type: "constant" # initialize the biases to zero (0) value: 0 } } }
Optional
bias_term
[defaulttrue
]: specifies whether to learn and apply a set of additive biases to the filter outputspad
(orpad_h
andpad_w
) [default 0]: specifies the number of pixels to (implicitly) add to each side of the inputstride
(orstride_h
andstride_w
) [default 1]: specifies the intervals at which to apply the filters to the inputgroup
(g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the iith output group channels will be only connected to the iith input group channels.