zoukankan      html  css  js  c++  java
  • 算法之美--2.3.1 Z字形编排问题

     2016-12-08   00:23:11

    写在前面的话:万事贵在坚持,万事开头难,有很多的东西要学,要知道主次,讲究效率,大的方向对就行!坚持........

    一、图像压缩编码中的Z字排序

    JPEG(Joint Photographic ExpertsGroup)是一种常见的图像文件格式,也是目前静态图像中压缩比最高的一种图像文件格式,它综合运用了多种压缩技术而达到一种极高的压缩比例。JPEG是作为一个国际数字图像压缩标准,压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像。目前,它已被广泛地应用与多媒体和网络程序中。通常,在JEPG编码过程中,有一个非常重要的步骤,即Z字形编排过程。Z字形编排过程大致是这样的:经过前期处理的图像被分为若干个 的小图像块,此时就从小图像块的左上角开始沿Z字形对图像元素进行遍历,并将遍历所得的结果重新写入等大小的图像块中,整个过程如图2-15所示。

    要实现这样一个Z字形排列可能读者咋一看会感觉无从下手。但是在分析了Z字形遍历原矩阵过程中的走向规律,其实可以设计一个非常简单的算法来实现这种编排。对于原始矩阵matrix中的任意元素matrix[i][j]的遍历走向规律可以分为如下三种情况

    • 如果二维数组中的元素matrix[i][j]中纵坐标j是偶数,且i=0或者i=7,那么遍历路径在矩阵中的走向就是水平向右移动一格。
    • 如果二维数组中的元素matrix[i][j]中纵坐标i是奇数,且j=0或者j=7,,那么遍历路径在矩阵中的走向就是垂直向下移动一格。
    • 除上述规则以外的情况,如果二维数组中的元素matrix[i][j]的横纵坐标和i+j是偶数,则遍历路径在矩阵中的走向就是右上角移动一格;否则,若i+j是奇数,则遍历路径在矩阵中的走向就是左下角移动一格。
    #include <iostream>
    #include <iomanip>
    
    using namespace std;
    
    #define  SIZE 8
    int main(int argc, char **argv[])
    {
        int matrix[SIZE][SIZE] = {0};
        int a[SIZE][SIZE] = { 0 };
     
        int *p = nullptr;
        p = &matrix[0][0];
        //初始化矩阵
        for (int k = 0; k < SIZE*SIZE; k++)
        {
            *p++ = k;
        }
        //打印原始矩阵
        cout << "原始矩阵如下:" << endl;
        for (int k= 0;k < SIZE;k++)
        {
            for (int h = 0; h < SIZE;h++)
            {
                cout << setw(4) << *(*(matrix + k) + h);
            }
            cout << endl;
        }
    
        //Z字形编排
        int i = 0, j = 0;  //变量不能重复
        for (int x = 0; x < SIZE;x++)
        {
            for (int y = 0; y < SIZE;y++)
            {
                *(*(a + i) + j) = *(*(matrix + x) + y);
    
                if((i==SIZE-1||i==0)&&j%2==0)  //水平右移
                {
                    j++;
                    continue;
                }
                if ((j==0||j==SIZE-1)&&i%2==1) //垂直下移
                {
                    i++;
                    continue;
                }
                if ((i+j)%2==0)        //右上
                {
                    i--; 
                    j++;
                }
                else if ((i+j)%2==1)   //左下
                {
                    i++;
                    j--;
                }
            }
        }
        cout << endl << "经过Z字形编排后的矩阵如下:" << endl;
        for (int i = 0; i < SIZE;i++)
        {
            for (int j = 0; j < SIZE;j++)
            {
                cout << setw(4) << *(*(a + i) + j);
            }
            cout << endl;
        }
        return 0;
    }

    运行结果:

    原始矩阵如下:
       0   1   2   3   4   5   6   7
       8   9  10  11  12  13  14  15
      16  17  18  19  20  21  22  23
      24  25  26  27  28  29  30  31
      32  33  34  35  36  37  38  39
      40  41  42  43  44  45  46  47
      48  49  50  51  52  53  54  55
      56  57  58  59  60  61  62  63
    
    经过Z字形编排后的矩阵如下:
       0   1   5   6  14  15  27  28
       2   4   7  13  16  26  29  42
       3   8  12  17  25  30  41  43
       9  11  18  24  31  40  44  53
      10  19  23  32  39  45  52  54
      20  22  33  38  46  51  55  60
      21  34  37  47  50  56  59  61
      35  36  48  49  57  58  62  63
    请按任意键继续. . .

      以前也看过左神的课:里面有矩阵的各种方法遍历,自己也练习过:矩阵的操作

  • 相关阅读:
    学习Extjs4 (21) 简单窗口
    C#启动外部程序的几种方法以及等待外部程序关闭的方法
    linux驱动学习(3)同步、信号量和自旋锁
    andoird webiew使用有道辞典实例
    Linux程序设计——用getopt处理命令行参数(转)
    git,github在windows上的搭建
    sparc芯片验证
    睡了一下午
    UNIX/Linux里统计文件里某个字符出现的次数(转)
    linux和单片机的串口通信
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/6143379.html
Copyright © 2011-2022 走看看