题目表述
- Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
分析
-
暴力枚举法。两点决定一条直线, n 个点两两组合,可以得到 1/2n(n + 1) 条直线,对每一条直线,判断 n 个点是否在该直线上,从而可以得到这条直线上的点的个数,选择最大的那条直线返回。复杂度 O(n3)。
-
上面的暴力枚举法以“边”为中心,再看另一种暴力枚举法,以每个“点”为中心,然后遍历剩余点,找到所有的斜率,如果斜率相同,那么一定共线对每个点,用一个哈希表, key 为斜率, value为该直线上的点数,计算出哈希表后,取最大值,并更新全局最大值,最后就是结果。时间复杂度O(n2),空间复杂度 O(n)
-
注意这道题的编译精度
分析:
任意一条直线都可以表述为
y = ax + b
假设,有两个点(x1,y1), (x2,y2),如果他们都在这条直线上则有
y1 = kx1 +b
y2 = kx2 +b
由此可以得到关系,k = (y2-y1)/(x2-x1)。即如果点c和点a的斜率为k, 而点b和点a的斜率也为k,可以知道点c和点b也在一条线上。
取定一个点points[i], 遍历其他所有节点, 然后统计斜率相同的点数,并求取最大值即可
AC代码
#include <iostream>
using namespace std;
#include <vector>
#include <unordered_map>
#define max(a,b) (((a) > (b)) ? (a) : (b))
//Definition for a point.
struct Point {
int x;
int y;
Point() : x(0), y(0) {}
Point(int a, int b) : x(a), y(b) {}
};
class Solution {
public:
int maxPoints(vector<Point> &points)
{
if (points.size()<3)
return points.size();
int result = 0;
unordered_map<double, int> slope_count;
for (int i = 0; i<points.size() - 1; i++)
{
slope_count.clear();
int samePointNum = 0; //与i重合的点
int point_max = 1; //和i共线的最大点数
for (int j = i + 1; j<points.size(); j++)
{
double slope; //斜率
if (points[i].x == points[j].x)
{
slope = std::numeric_limits<double>::infinity(); //防止重复元素没有斜率
if (points[i].y == points[j].y)
{
samePointNum++;
continue;
}
}
else
{
slope = 1.0*(points[i].y - points[j].y) / (points[i].x - points[j].x);
}
int count = 0;
if (slope_count.find(slope) != slope_count.end())
count = ++slope_count[slope];
else
{
count = 2;
slope_count[slope] = 2;
}
if (point_max<count)
point_max = count;
}
result = max(result, point_max + samePointNum);
}
return result;
}
};
class Solution1 {
public:
int maxPoints(vector<Point>& points)
{
if (points.size() <= 2) return points.size();
int res = 0;
for (int i = 0; i < points.size() - 1; i++) {
int numVertical = 1, local = 1, duplicate = 0;
unordered_map<double, int> map;
for (int j = i + 1; j < points.size(); j++)
if (points[i].x == points[j].x) // special cases
if (points[i].y == points[j].y) // duplicate
duplicate++;
else // vertical
numVertical++;
else {
double slope = (points[i].y - points[j].y)*1.0 / (points[i].x - points[j].x); //斜率有浮点精度的问题
map[slope] == 0 ? map[slope] = 2 : map[slope]++;
local = max(local, map[slope]);
}
local = max(local + duplicate, numVertical + duplicate);
res = max(res, local);
}
return res;
}
};
class Solution2 //可能跟编译器有关吧,vs2013下输出3,但是在leetcode下通过了
{
public:
int maxPoints(vector<Point>& points) { // O(n^2)
int result = 0;
for (int i = 0; i < points.size(); i++) {
auto &p1 = points[i];
unordered_map<long double, int> hashT;
int verticals = 1, duplicates = 0, local = 1;
for (int j = i + 1; j < points.size(); j++) {
auto &p2 = points[j];
if (p1.y == p2.y && p1.x == p2.x) duplicates++;
else if (p1.x == p2.x) verticals++;
else {
auto slope = static_cast<long double>(p1.y - p2.y) / (p1.x - p2.x);
hashT[slope] = hashT[slope] ? 1 + hashT[slope] : 2;
local = max(local, hashT[slope]);
}
local = max(local, verticals);
}
result = max(result, local + duplicates);
}
return result;
}
};
//
//Your input
//
//[[0, 0], [94911151, 94911150], [94911152, 94911151]]
//Your answer
//
//3
//Expected answer
//
//2
int main()
{
Solution2 S;
vector<Point> points;
Point p1(0, 0), p2(94911151, 94911150), p3(94911152, 94911151);//[[0,0],[94911151, 94911150],[94911152, 94911151]] //[[0,0],[-1,-1],[2,2]]
points.push_back(p1);
points.push_back(p2);
points.push_back(p3);
int ret=S.maxPoints(points);
cout << ret << endl;
return 0;
}
- 测试用例:[(0,0),(-1,-1),(2,2)]没有通过!