zoukankan      html  css  js  c++  java
  • Tensorflow 之模型内容可视化

    1. tensorflow实现

    # 卷积网络的训练数据为MNIST(28*28灰度单色图像)
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    
    train_epochs = 100    # 训练轮数
    batch_size   = 100     # 随机出去数据大小
    display_step = 1       # 显示训练结果的间隔
    learning_rate= 0.0001  # 学习效率
    drop_prob    = 0.5     # 正则化,丢弃比例
    fch_nodes    = 512     # 全连接隐藏层神经元的个数
    
    # 网络模型需要的一些辅助函数
    # 权重初始化(卷积核初始化)
    # tf.truncated_normal()不同于tf.random_normal(),返回的值中不会偏离均值两倍的标准差
    # 参数shpae为一个列表对象,例如[5, 5, 1, 32]对应
    # 5,5 表示卷积核的大小, 1代表通道channel,对彩色图片做卷积是3,单色灰度为1
    # 最后一个数字32,卷积核的个数,(也就是卷基层提取的特征数量)
    #   显式声明数据类型,切记
    def weight_init(shape):
        weights = tf.truncated_normal(shape, stddev=0.1,dtype=tf.float32)
        return tf.Variable(weights)
    
    # 偏置的初始化
    def biases_init(shape):
        biases = tf.random_normal(shape,dtype=tf.float32)
        return tf.Variable(biases)
    
    # 随机选取mini_batch
    def get_random_batchdata(n_samples, batchsize):
        start_index = np.random.randint(0, n_samples - batchsize)
        return (start_index, start_index + batchsize)
    
    # 全连接层权重初始化函数xavier
    def xavier_init(layer1, layer2, constant = 1):
        Min = -constant * np.sqrt(6.0 / (layer1 + layer2))
        Max = constant * np.sqrt(6.0 / (layer1 + layer2))
        return tf.Variable(tf.random_uniform((layer1, layer2), minval = Min, maxval = Max, dtype = tf.float32))
    
    # 卷积
    def conv2d(x, w):
        return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
    
    # 源码的位置在tensorflow/python/ops下nn_impl.py和nn_ops.py
    # 这个函数接收两个参数,x 是图像的像素, w 是卷积核
    # x 张量的维度[batch, height, width, channels]
    # w 卷积核的维度[height, width, channels, channels_multiplier]
    # tf.nn.conv2d()是一个二维卷积函数,
    # stirdes 是卷积核移动的步长,4个1表示,在x张量维度的四个参数上移动步长
    # padding 参数'SAME',表示对原始输入像素进行填充,卷积后映射的2D图像与原图大小相等
    # 填充,是指在原图像素值矩阵周围填充0像素点
    # 如果不进行填充,假设 原图为 32x32 的图像,卷积和大小为 5x5 ,卷积后映射图像大小 为 28x28
    
    # 池化
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    # 池化跟卷积的情况有点类似
    # x 是卷积后,有经过非线性激活后的图像,
    # ksize 是池化滑动张量
    # ksize 的维度[batch, height, width, channels],跟 x 张量相同
    # strides [1, 2, 2, 1],与上面对应维度的移动步长
    # padding与卷积函数相同,padding='VALID',对原图像不进行0填充
    
    # x 是手写图像的像素值,y 是图像对应的标签
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    # 把灰度图像一维向量,转换为28x28二维结构
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    # -1表示任意数量的样本数,大小为28x28深度为一的张量
    # 可以忽略(其实是用深度为28的,28x1的张量,来表示28x28深度为1的张量)
    
    w_conv1 = weight_init([5, 5, 1, 16])                             # 5x5,深度为1,16个
    b_conv1 = biases_init([16])
    h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)    # 输出张量的尺寸:28x28x16
    h_pool1 = max_pool_2x2(h_conv1)                                   # 池化后张量尺寸:14x14x16
    # h_pool1 , 14x14的16个特征图
    
    w_conv2 = weight_init([5, 5, 16, 32])                             # 5x5,深度为16,32个
    b_conv2 = biases_init([32])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)    # 输出张量的尺寸:14x14x32
    h_pool2 = max_pool_2x2(h_conv2)                                   # 池化后张量尺寸:7x7x32
    # h_pool2 , 7x7的32个特征图
    
    # h_pool2是一个7x7x32的tensor,将其转换为一个一维的向量
    h_fpool2 = tf.reshape(h_pool2, [-1, 7*7*32])
    # 全连接层,隐藏层节点为512个
    # 权重初始化
    w_fc1 = xavier_init(7*7*32, fch_nodes)
    b_fc1 = biases_init([fch_nodes])
    h_fc1 = tf.nn.relu(tf.matmul(h_fpool2, w_fc1) + b_fc1)
    
    # 全连接隐藏层/输出层
    # 为了防止网络出现过拟合的情况,对全连接隐藏层进行 Dropout(正则化)处理,在训练过程中随机的丢弃部分
    # 节点的数据来防止过拟合.Dropout同把节点数据设置为0来丢弃一些特征值,仅在训练过程中,
    # 预测的时候,仍使用全数据特征
    # 传入丢弃节点数据的比例
    #keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob=drop_prob)
    
    # 隐藏层与输出层权重初始化
    w_fc2 = xavier_init(fch_nodes, 10)
    b_fc2 = biases_init([10])
    
    # 未激活的输出
    y_ = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)
    # 激活后的输出
    y_out = tf.nn.softmax(y_)
    
    # 交叉熵代价函数
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_out), reduction_indices = [1]))
    
    # tensorflow自带一个计算交叉熵的方法
    # 输入没有进行非线性激活的输出值 和 对应真实标签
    #cross_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_, y))
    
    # 优化器选择Adam(有多个选择)
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
    
    # 准确率
    # 每个样本的预测结果是一个(1,10)的vector
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_out, 1))
    # tf.cast把bool值转换为浮点数
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # 全局变量进行初始化的Operation
    init = tf.global_variables_initializer()
    
    # 加载数据集MNIST
    mnist = input_data.read_data_sets('MNIST/mnist', one_hot=True)
    n_samples = int(mnist.train.num_examples)
    total_batches = int(n_samples / batch_size)
    
    
    # 会话
    with tf.Session() as sess:
        sess.run(init)
        Cost = []
        Accuracy = []
        for i in range(train_epochs):
    
            for j in range(100):
                start_index, end_index = get_random_batchdata(n_samples, batch_size)
    
                batch_x = mnist.train.images[start_index: end_index]
                batch_y = mnist.train.labels[start_index: end_index]
                _, cost, accu = sess.run([ optimizer, cross_entropy,accuracy], feed_dict={x:batch_x, y:batch_y})
                Cost.append(cost)
                Accuracy.append(accu)
            if i % display_step ==0:
                print ('Epoch : %d ,  Cost : %.7f'%(i+1, cost))
        print ('training finished')
        # 代价函数曲线
        fig1,ax1 = plt.subplots(figsize=(10,7))
        plt.plot(Cost)
        ax1.set_xlabel('Epochs')
        ax1.set_ylabel('Cost')
        plt.title('Cross Loss')
        plt.grid()
        plt.show()
        # 准确率曲线
        fig7,ax7 = plt.subplots(figsize=(10,7))
        plt.plot(Accuracy)
        ax7.set_xlabel('Epochs')
        ax7.set_ylabel('Accuracy Rate')
        plt.title('Train Accuracy Rate')
        plt.grid()
        plt.show()
    #----------------------------------各个层特征可视化-------------------------------
        # imput image
        fig2,ax2 = plt.subplots(figsize=(2,2))
        ax2.imshow(np.reshape(mnist.train.images[11], (28, 28)))
        plt.show()
    
        # 第一层的卷积输出的特征图
        input_image = mnist.train.images[11:12]
        conv1_16 = sess.run(h_conv1, feed_dict={x:input_image})     # [16, 28, 28 ,1]
        conv1_reshape = sess.run(tf.reshape(conv1_16, [16, 1, 28, 28]))
        fig3,ax3 = plt.subplots(nrows=1, ncols=16, figsize = (16,1))
        for i in range(16):
            ax3[i].imshow(conv1_reshape[i][0])                      # tensor的切片[batch, channels, row, column]
    
        plt.title('Conv1 16x28x28')
        plt.show()
    
        # 第一层池化后的特征图
        pool1_16 = sess.run(h_pool1, feed_dict={x:input_image})     # [16, 14, 14, 1]
        pool1_reshape = sess.run(tf.reshape(pool1_16, [16, 1, 14, 14]))
        fig4,ax4 = plt.subplots(nrows=1, ncols=16, figsize=(16,1))
        for i in range(16):
            ax4[i].imshow(pool1_reshape[i][0])
    
        plt.title('Pool1 16x14x14')
        plt.show()
    
        # 第二层卷积输出特征图
        conv2_32 = sess.run(h_conv2, feed_dict={x:input_image})          # [32, 14, 14, 1]
        conv2_reshape = sess.run(tf.reshape(conv2_32, [32, 1, 14, 14]))
        fig5,ax5 = plt.subplots(nrows=1, ncols=32, figsize = (32, 1))
        for i in range(32):
            ax5[i].imshow(conv2_reshape[i][0])
        plt.title('Conv2 32x14x14')
        plt.show()
    
        # 第二层池化后的特征图
        pool2_32 = sess.run(h_pool2, feed_dict={x:input_image})          #[32, 7, 7, 1]
        pool2_reshape = sess.run(tf.reshape(pool2_32, [32, 1, 7, 7]))
        fig6,ax6 = plt.subplots(nrows=1, ncols=32, figsize = (32, 1))
        plt.title('Pool2 32x7x7')
        for i in range(32):
            ax6[i].imshow(pool2_reshape[i][0])
    
        plt.show()
    View Code

    2.keras实现

    '''Visualization of the filters of VGG16, via gradient ascent in input space.
    This script can run on CPU in a few minutes.
    Results example: http://i.imgur.com/4nj4KjN.jpg
    '''
    from __future__ import print_function
    
    from scipy.misc import imsave
    import numpy as np
    import time
    from keras.applications import vgg16
    from keras import backend as K
    
    # dimensions of the generated pictures for each filter.
    img_width = 128
    img_height = 128
    
    # the name of the layer we want to visualize
    # (see model definition at keras/applications/vgg16.py)
    layer_name = 'block5_conv1'
    
    # util function to convert a tensor into a valid image
    
    
    def deprocess_image(x):
        # normalize tensor: center on 0., ensure std is 0.1
        x -= x.mean()
        x /= (x.std() + K.epsilon())
        x *= 0.1
    
        # clip to [0, 1]
        x += 0.5
        x = np.clip(x, 0, 1)
    
        # convert to RGB array
        x *= 255
        if K.image_data_format() == 'channels_first':
            x = x.transpose((1, 2, 0))
        x = np.clip(x, 0, 255).astype('uint8')
        return x
    
    # build the VGG16 network with ImageNet weights
    model = vgg16.VGG16(weights='imagenet', include_top=False)
    print('Model loaded.')
    
    model.summary()
    
    # this is the placeholder for the input images
    input_img = model.input
    
    # get the symbolic outputs of each "key" layer (we gave them unique names).
    layer_dict = dict([(layer.name, layer) for layer in model.layers[1:]])
    
    
    def normalize(x):
        # utility function to normalize a tensor by its L2 norm
        return x / (K.sqrt(K.mean(K.square(x))) + K.epsilon())
    
    
    kept_filters = []
    for filter_index in range(200):
        # we only scan through the first 200 filters,
        # but there are actually 512 of them
        print('Processing filter %d' % filter_index)
        start_time = time.time()
    
        # we build a loss function that maximizes the activation
        # of the nth filter of the layer considered
        layer_output = layer_dict[layer_name].output
        if K.image_data_format() == 'channels_first':
            loss = K.mean(layer_output[:, filter_index, :, :])
        else:
            loss = K.mean(layer_output[:, :, :, filter_index])
    
        # we compute the gradient of the input picture wrt this loss
        grads = K.gradients(loss, input_img)[0]
    
        # normalization trick: we normalize the gradient
        grads = normalize(grads)
    
        # this function returns the loss and grads given the input picture
        iterate = K.function([input_img], [loss, grads])
    
        # step size for gradient ascent
        step = 1.
    
        # we start from a gray image with some random noise
        if K.image_data_format() == 'channels_first':
            input_img_data = np.random.random((1, 3, img_width, img_height))
        else:
            input_img_data = np.random.random((1, img_width, img_height, 3))
        input_img_data = (input_img_data - 0.5) * 20 + 128
    
        # we run gradient ascent for 20 steps
        for i in range(20):
            loss_value, grads_value = iterate([input_img_data])
            input_img_data += grads_value * step
    
            print('Current loss value:', loss_value)
            if loss_value <= 0.:
                # some filters get stuck to 0, we can skip them
                break
    
        # decode the resulting input image
        if loss_value > 0:
            img = deprocess_image(input_img_data[0])
            kept_filters.append((img, loss_value))
        end_time = time.time()
        print('Filter %d processed in %ds' % (filter_index, end_time - start_time))
    
    # we will stich the best 64 filters on a 8 x 8 grid.
    n = 8
    
    # the filters that have the highest loss are assumed to be better-looking.
    # we will only keep the top 64 filters.
    kept_filters.sort(key=lambda x: x[1], reverse=True)
    kept_filters = kept_filters[:n * n]
    
    # build a black picture with enough space for
    # our 8 x 8 filters of size 128 x 128, with a 5px margin in between
    margin = 5
    width = n * img_width + (n - 1) * margin
    height = n * img_height + (n - 1) * margin
    stitched_filters = np.zeros((width, height, 3))
    
    # fill the picture with our saved filters
    for i in range(n):
        for j in range(n):
            img, loss = kept_filters[i * n + j]
            stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
                             (img_height + margin) * j: (img_height + margin) * j + img_height, :] = img
    
    # save the result to disk
    imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)
    View Code

    3.tflearn

    """ An example showing how to save/restore models and retrieve weights. """
    
    from __future__ import absolute_import, division, print_function
    
    import tflearn
    
    import tflearn.datasets.mnist as mnist
    
    # MNIST Data
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    
    # Model
    input_layer = tflearn.input_data(shape=[None, 784], name='input')
    dense1 = tflearn.fully_connected(input_layer, 128, name='dense1')
    dense2 = tflearn.fully_connected(dense1, 256, name='dense2')
    softmax = tflearn.fully_connected(dense2, 10, activation='softmax')
    regression = tflearn.regression(softmax, optimizer='adam',
                                    learning_rate=0.001,
                                    loss='categorical_crossentropy')
    
    # Define classifier, with model checkpoint (autosave)
    model = tflearn.DNN(regression, checkpoint_path='model.tfl.ckpt')
    
    # Train model, with model checkpoint every epoch and every 200 training steps.
    model.fit(X, Y, n_epoch=1,
              validation_set=(testX, testY),
              show_metric=True,
              snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch.
              snapshot_step=500, # Snapshot (save & evalaute) model every 500 steps.
              run_id='model_and_weights')
    
    
    # ---------------------
    # Save and load a model
    # ---------------------
    
    # Manually save model
    model.save("model.tfl")
    
    # Load a model
    model.load("model.tfl")
    
    # Or Load a model from auto-generated checkpoint
    # >> model.load("model.tfl.ckpt-500")
    
    # Resume training
    model.fit(X, Y, n_epoch=1,
              validation_set=(testX, testY),
              show_metric=True,
              snapshot_epoch=True,
              run_id='model_and_weights')
    
    
    # ------------------
    # Retrieving weights
    # ------------------
    
    # Retrieve a layer weights, by layer name:
    dense1_vars = tflearn.variables.get_layer_variables_by_name('dense1')
    # Get a variable's value, using model `get_weights` method:
    print("Dense1 layer weights:")
    print(model.get_weights(dense1_vars[0]))
    # Or using generic tflearn function:
    print("Dense1 layer biases:")
    with model.session.as_default():
        print(tflearn.variables.get_value(dense1_vars[1]))
    
    # It is also possible to retrieve a layer weights through its attributes `W`
    # and `b` (if available).
    # Get variable's value, using model `get_weights` method:
    print("Dense2 layer weights:")
    print(model.get_weights(dense2.W))
    # Or using generic tflearn function:
    print("Dense2 layer biases:")
    with model.session.as_default():
    print(tflearn.variables.get_value(dense2.b))
    View Code
  • 相关阅读:
    网店推广之秘诀
    预言:“你被暴光了没有?” 将成为2010又一网络流行语
    已不联系好多年
    任道而重远
    从思南县看撤县建市对提升城市价值的影响
    我和三十有个约定
    浅谈小学生英语学习方法
    热烈祝贺IT诗人代腾飞官方网站开通啦
    爱情许愿砂
    “走远了” 2010又一网络流行语诞生
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/8946742.html
Copyright © 2011-2022 走看看