zoukankan      html  css  js  c++  java
  • Ubuntu16.04下caffe CPU版的图片训练和测试

    一 数据准备

    二、转换为lmdb格式

    1、首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件。然后编写一个脚本create_filelist.sh,用来生成train.txt和test.txt清单文件

    (caffe_src) root@ranxf-TEST:/workdisk/caffe/examples# mkdir myfile
    (caffe_src) root@ranxf-TEST:/workdisk/caffe/examples/myfile# vim create_filelist.sh
    #!/usr/bin/env sh
    DATA=data/re/
    MY=examples/myfile
    
    echo "Create train.txt..."
    rm -rf $MY/train.txt
    for i in 3 4 5 6 7 
    do
    find $DATA/train -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/train.txt
    done
    echo “done”
    
    echo "Create test.txt..."
    rm -rf $MY/test.txt
    for i in 3 4 5 6 7
    do
    find $DATA/test -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/test.txt
    done
    echo "All done"

    然后,运行此脚本(注意是在caffe根目录下)

    (caffe_src) root@ranxf-TEST:/workdisk/caffe# sh examples/myfile/create_filelist.sh 
    Create train.txt...
    done
    Create test.txt...
    All done

    成功的话,就会在examples/myfile/ 文件夹下生成train.txt和test.txt两个文本文件,里面就是图片的列表清单。

    2、接着再编写一个脚本文件,调用convert_imageset命令来转换数据格式。
    # sudo vi examples/myfile/create_lmdb.sh

    #!/usr/bin/env sh
    MY=examples/myfile
    
    echo "Create train lmdb.."
    rm -rf $MY/img_train_lmdb
    build/tools/convert_imageset 
    --shuffle 
    --resize_height=256 
    --resize_width=256 
    /workdisk/caffe/data/re/ 
    $MY/train.txt 
    $MY/img_train_lmdb
    echo "done"
    
    echo "Create test lmdb.."
    rm -rf $MY/img_test_lmdb
    build/tools/convert_imageset 
    --shuffle 
    --resize_width=256 
    --resize_height=256 
    /workdisk/caffe/data/re/ 
    $MY/test.txt 
    $MY/img_test_lmdb
    
    echo "All Done.."
    (caffe_src) root@ranxf-TEST:/workdisk/caffe# ./examples/myfile/create_lmdb.sh 
    Create train lmdb..
    I0910 15:49:20.354158  7404 convert_imageset.cpp:86] Shuffling data
    I0910 15:49:20.354992  7404 convert_imageset.cpp:89] A total of 400 images.
    I0910 15:49:20.355206  7404 db_lmdb.cpp:35] Opened lmdb examples/myfile/img_train_lmdb
    I0910 15:49:21.807344  7404 convert_imageset.cpp:153] Processed 400 files.
    done
    Create test lmdb..
    I0910 15:49:21.852502  7407 convert_imageset.cpp:86] Shuffling data
    I0910 15:49:21.852725  7407 convert_imageset.cpp:89] A total of 100 images.
    I0910 15:49:21.852886  7407 db_lmdb.cpp:35] Opened lmdb examples/myfile/img_test_lmdb
    I0910 15:49:22.201551  7407 convert_imageset.cpp:153] Processed 100 files.
    All Done..

    因为图片大小不一,因此统一转换成256*256大小。运行成功后,会在 examples/myfile下面生成两个文件夹img_train_lmdb和img_test_lmdb,分别用于保存图片转换后的lmdb文件。

    (caffe_src) root@ranxf-TEST:/workdisk/caffe/examples/myfile# ls
    create_filelist.sh  create_lmdb.sh  img_test_lmdb  img_train_lmdb  test.txt  train.txt

    三、计算均值并保存

    图片减去均值再训练,会提高训练速度和精度。因此,一般都会有这个操作。

    caffe程序提供了一个计算均值的文件compute_image_mean.cpp,我们直接使用就可以了

    (caffe_src) root@ranxf-TEST:/workdisk/caffe# build/tools/compute_image_mean examples/myfile/img_train_lmdb examples/myfile/mean.binaryproto
    I0910 15:56:26.287912  7824 db_lmdb.cpp:35] Opened lmdb examples/myfile/img_train_lmdb
    I0910 15:56:26.288938  7824 compute_image_mean.cpp:70] Starting iteration
    I0910 15:56:26.352404  7824 compute_image_mean.cpp:101] Processed 400 files.
    I0910 15:56:26.352833  7824 compute_image_mean.cpp:108] Write to examples/myfile/mean.binaryproto
    I0910 15:56:26.354002  7824 compute_image_mean.cpp:114] Number of channels: 3
    I0910 15:56:26.354115  7824 compute_image_mean.cpp:119] mean_value channel [0]: 100.254
    I0910 15:56:26.365298  7824 compute_image_mean.cpp:119] mean_value channel [1]: 114.454
    I0910 15:56:26.365384  7824 compute_image_mean.cpp:119] mean_value channel [2]: 121.707
    (caffe_src) root@ranxf-TEST:/workdisk/caffe# 
    compute_image_mean带两个参数,第一个参数是lmdb训练数据位置,第二个参数设定均值文件的名字及保存路径。
    运行成功后,会在 examples/myfile/ 下面生成一个mean.binaryproto的均值文件。
    (caffe_src) root@ranxf-TEST:/workdisk/caffe/examples/myfile# ls
    create_filelist.sh  create_lmdb.sh  img_test_lmdb  img_train_lmdb  mean.binaryproto  test.txt  train.txt
    (caffe_src) root@ranxf-TEST:/workdisk/caffe/examples/myfile# 

    四、创建模型并编写配置文件

    模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内

    (caffe_src) root@ranxf-TEST:/workdisk/caffe# cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
    (caffe_src) root@ranxf-TEST:/workdisk/caffe# 
    (caffe_src) root@ranxf-TEST:/workdisk/caffe# cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/

    修改其中的solver.prototxt

    net: "examples/myfile/train_val.prototxt"
    test_iter: 2
    test_interval: 50
    base_lr: 0.01
    lr_policy: "step"
    gamma: 0.1
    stepsize: 100
    display: 20
    max_iter: 500
    momentum: 0.9
    weight_decay: 0.0005
    solver_mode: CPU

    原始配置文件内容为:

    net: "models/bvlc_reference_caffenet/train_val.prototxt"
    test_iter: 1000
    test_interval: 1000
    base_lr: 0.01
    lr_policy: "step"
    gamma: 0.1
    stepsize: 100000
    display: 20
    max_iter: 450000
    momentum: 0.9
    weight_decay: 0.0005
    snapshot: 10000
    snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train"
    solver_mode: GPU

    100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。

    修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。就是修改两个data layer的mean_file和source这两个地方,其它都没有变化 。

    name: "CaffeNet"
    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase: TRAIN
      }
      transform_param {
        mirror: true
        crop_size: 227
        mean_file: "examples/myfile/mean.binaryproto"
      }
    # mean pixel / channel-wise mean instead of mean image
    #  transform_param {
    #    crop_size: 227
    #    mean_value: 104
    #    mean_value: 117
    #    mean_value: 123
    #    mirror: true
    #  }
      data_param {
        source: "examples/myfile/img_train_lmdb"
        batch_size: 256
        backend: LMDB
      }
    }
    layer {
      name: "data"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase: TEST
      }
      transform_param {
        mirror: false
        crop_size: 227
        mean_file: "examples/myfile/mean.binaryproto"
      }
    # mean pixel / channel-wise mean instead of mean image
    #  transform_param {
    #    crop_size: 227
    #    mean_value: 104
    #    mean_value: 117
    #    mean_value: 123
    #    mirror: false
    #  }
      data_param {
        source: "examples/myfile/img_train_lmdb"
        batch_size: 50
        backend: LMDB
      }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
    ……………………

    如果前面都没有问题,数据准备好了,配置文件也配置好了,这一步就比较简单了。

    运行时间和最后的精确度,会根据机器配置,参数设置的不同而不同。我的是CPU运行500次10个小时20分钟,准确性69%,吐槽机器配置。

    I0911 02:42:50.312186  9113 solver.cpp:464] Snapshotting to binary proto file examples/myfile/solver_iter_500.caffemodel
    I0911 02:42:52.477775  9113 sgd_solver.cpp:284] Snapshotting solver state to binary proto file examples/myfile/solver_iter_500.solverstate
    I0911 02:42:53.719158  9116 data_layer.cpp:73] Restarting data prefetching from start.
    I0911 02:43:23.561343  9113 solver.cpp:327] Iteration 500, loss = 0.689866
    I0911 02:43:23.648788  9113 solver.cpp:347] Iteration 500, Testing net (#0)
    I0911 02:43:23.693032  9119 data_layer.cpp:73] Restarting data prefetching from start.
    I0911 02:43:35.412401  9113 solver.cpp:414]     Test net output #0: accuracy = 0.69
    I0911 02:43:35.412444  9113 solver.cpp:414]     Test net output #1: loss = 0.66485 (* 1 = 0.66485 loss)
    I0911 02:43:35.412451  9113 solver.cpp:332] Optimization Done.
    I0911 02:43:35.425511  9113 caffe.cpp:250] Optimization Done.

    参考文章:Caffe学习:从头到尾跑一遍模型的训练和测试

    Caffe学习系列(12):训练和测试自己的图片

  • 相关阅读:
    Py修行路 python基础 (二十五)线程与进程
    Py修行路 python基础 (二十一)logging日志模块 json序列化 正则表达式(re)
    Py修行路 python基础 (二十四)socket编程
    Py修行路 python基础 (二十三)模块与包
    Py修行路 python基础 (二十二)异常处理
    Py修行路 python基础 (二十)模块 time模块,random模块,hashlib模块,OS及sys模块
    Py修行路 python基础 (十九)面向对象进阶(下)
    Oracle数据库的下载和安装
    单体测试详解
    单体测试书的检查要点
  • 原文地址:https://www.cnblogs.com/ranxf/p/11498291.html
Copyright © 2011-2022 走看看