python3 pickle持久化的储存数据。
python程序运行中得到了一些字符串,列表,字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据。python模块大全中pickle模块就排上用场了, 他可以将对象转换为一种可以传输或存储的格式。
pickle对象串行化
- pickle模块将任意一个python对象转换成一系统字节的这个操作过程叫做串行化对象;
pickle与cpickle比较
-
pickle完全用python来实现的,cpickle用C来实现的,cpickle的速度要比pickle快好多倍,电脑中如果有cpickle的话建议使用cpickle。
pickle模块中常用的函数:
- pickle.dump(obj, file, [,protocol])
- 含义:pickle.dump(对象,文件,[使用协议])
- 将要持久化的数据“对象”,保存到“文件”中,使用有3种协议,索引0为ASCII,1为旧式二进制,2为新式二进制协议,不同之处在于2要更高效一些。
- 默认dump方法使用0做协议
- pickle.load(file)
- 含义:pickle.load(文件),将file中的对象序列化读出。
- 从“文件”中读取字符串,将他们反序列化转换为python的数据对象,可以像操作数据类型的这些方法来操作它们;
- pickle.dumps(obj[, protocol])
- 函数的功能:将obj对象序列化为string形式,而不是存入文件中。
- obj:想要序列化的obj对象。
- protocal:如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
- pickle.loads(string)
- 函数的功能:从string中读出序列化前的obj对象。
- string:文件名称。
dump() 与 load() 相比 dumps() 和 loads() 还有另一种能力:dump()函数能一个接一个地将几个对象序列化存储到同一个文件中,随后调用load()来以同样的顺序反序列化读出这些对象。
pickle实例代码:
1、一个字典a,用dumple()存储到本地文件,所存数据的格式就是字典,而普通的file.write()写入文件的是字符串。读取时,load()返回的是一个字典,file.read()返回的是一个字符串。
1 import pickle 2 3 4 a = {" name ": "Tom", "age": "40"} 5 with open('text.txt', 'wb') as file: 6 pickle.dump(a, file) 7 8 with open('text.txt', 'rb') as file2: 9 b = pickle.load(file2) 10 11 print(type(b)) 12 print(b)
执行结果:
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/example.py <class 'dict'> {'age': '40', ' name ': 'Tom'}
2、一个列表info,用 pickle.dumps()方法将info序列化为string形式,而不是存入文件中。用pickle.loads()方法从string(文件名称data1)读出序列化前的对象。
1 import pickle 2 import pprint 3 4 info = [1, 2, 3, 'abc', 'ilovepython'] 5 print('原始数据:') 6 pprint.pprint(info) 7 8 data1 = pickle.dumps(info) 9 data2 = pickle.loads(data1) 10 11 print("序列化:%r" % data1) 12 print("反序列化: %r" % data2)
执行结果:
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/demo1.py 原始数据: [1, 2, 3, 'abc', 'ilovepython'] 序列化:b'x80x03]qx00(Kx01Kx02Kx03Xx03x00x00x00abcqx01Xx0bx00x00x00ilovepythonqx02e.' 反序列化: [1, 2, 3, 'abc', 'ilovepython'] Process finished with exit code 0
3、pickle模块主要函数实例
1 # pickle模块主要函数的应用举例 2 import pickle 3 import pprint 4 5 dataList = [[8, 1, 'python'], 6 [8, 1, 'python'], 7 [8, 0, 'python'], 8 [8, 1, 'C++'], 9 [8, 1, 'C++']] 10 dataDic = {0: [1, 2, 3, 4], 11 1: ('a', 'b'), 12 2: {'c': 'yes', 'd': 'no'}} 13 print("原始数据dataList:") 14 pprint.pprint(dataList) 15 print(' ') 16 print("原始数据dataDic:") 17 pprint.pprint(dataDic) 18 19 # 使用dump()将数据序列化到文件中 20 fw = open('dataFile.txt', 'wb') 21 # Pickle the list using the highest protocol available. 22 pickle.dump(dataList, fw) 23 # Pickle dictionary using protocol 0. 24 pickle.dump(dataDic, fw) 25 fw.close() 26 27 # 使用load()将数据从文件中序列化读出 28 fr = open('dataFile.txt', 'rb') 29 data1 = pickle.load(fr) 30 print(' '+"反序列化1:%r" % data1) 31 data2 = pickle.load(fr) 32 print("反序列化2:%r" % data2 + ' ') 33 fr.close() 34 35 # 使用dumps()和loads()举例 36 p = pickle.dumps(dataList) 37 print(pickle.loads(p)) 38 p = pickle.dumps(dataDic) 39 print(pickle.loads(p))
执行结果:
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/demo2.py 原始数据dataList: [[8, 1, 'python'], [8, 1, 'python'], [8, 0, 'python'], [8, 1, 'C++'], [8, 1, 'C++']] 原始数据dataDic: {0: [1, 2, 3, 4], 1: ('a', 'b'), 2: {'c': 'yes', 'd': 'no'}} 反序列化1:[[8, 1, 'python'], [8, 1, 'python'], [8, 0, 'python'], [8, 1, 'C++'], [8, 1, 'C++']] 反序列化2:{0: [1, 2, 3, 4], 1: ('a', 'b'), 2: {'d': 'no', 'c': 'yes'}} [[8, 1, 'python'], [8, 1, 'python'], [8, 0, 'python'], [8, 1, 'C++'], [8, 1, 'C++']] {0: [1, 2, 3, 4], 1: ('a', 'b'), 2: {'d': 'no', 'c': 'yes'}} Process finished with exit code 0
4、要注意的是,在load(file)时,要让python能够找到类的定义,否则会报错:
1 import pickle 2 3 4 class Person: 5 def __init__(self, name, age): 6 self.name = name 7 self.age = age 8 9 def show(self): 10 print(self.name+"_"+str(self.age)) 11 12 aa = Person("Battier", 6) 13 aa.show() 14 15 f = open('./demo3.txt', 'wb') 16 pickle.dump(aa, f, 0) 17 f.close() 18 19 # del Person 20 f = open('./demo3.txt', 'rb') 21 bb = pickle.load(f) 22 23 f.close() 24 bb.show()
如果不注释掉del Person的话,那么会报错:(意思就是当前的模块找不到类了)
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/demo3.py Battier_6 Traceback (most recent call last): File "/home/rxf/python3_1000/1000/python3_server/python_pickle/demo3.py", line 21, in <module> bb = pickle.load(f) AttributeError: Can't get attribute 'Person' on <module '__main__' from '/home/rxf/python3_1000/1000/python3_server/python_pickle/demo3.py'> Process finished with exit code 1
5、清空pickler的“备忘”,使用Pickler实例在序列化对象的时候,它会“记住”已经被序列化的对象引用,所以对同一对象多次调用dump(obj),pickler不会“傻呼呼”的去多次序列化。
1 import pickle 2 import io 3 4 5 class Person: 6 def __init__(self, name, age): 7 self.name = name 8 self.age = age 9 10 def show(self): 11 print(self.name + "_"+str(self.age)) 12 13 aa = Person("Battier", 6) 14 aa.show() 15 16 17 fle = io.BytesIO() 18 pick = pickle.Pickler(fle) 19 pick.dump(aa) 20 val1 = fle.getvalue() 21 print(len(val1)) 22 23 pick.clear_memo() 24 pick.dump(aa) 25 val2 = fle.getvalue() 26 print(len(val2)) 27 fle.close()
上面代码运行结果:
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/demo4.py Battier_6 69 138 Process finished with exit code 0
再注释掉pick.clear_memo()后,运行结果如下:
/usr/bin/python3.5 /home/rxf/python3_1000/1000/python3_server/python_pickle/demo4.py Battier_6 69 74 Process finished with exit code 0
主要是因为,python的pickle如果不clear_memo,则不会多次去序列化对象。