zoukankan      html  css  js  c++  java
  • 使用Tensorflow object detection API——训练模型(Window10系统)

    【数据标注处理】

      1、先将下载好的图片训练数据放在models-master/research/images文件夹下,并分别为训练数据和测试数据创建train、test两个文件夹。文件夹目录如下

      

      2、下载 LabelImg 这款小软件对图片进行标注

      3、下载完成后解压,直接运行。(注:软件目录最好不要存在中文,否则可能会报错)

      4、设置图片目录,逐张打开图片,按快捷键W,然后通过鼠标拖拽实现目标物体框选,随后输入物体类别,单张图片多目标则重复操作,目标框选完成后,保存操作。

      5、重复上述操作,直至所有图片完成选定。

    【图片标注数据处理】

      1、打开xml_to_csv.py,修改path 为对应train、test文件夹路径,并运行,在对应目录下将会生成csv文件,将生成的csv文件拷贝到models-master esearchobject_detectiondata文件夹下。

    # -*- coding: utf-8 -*-
    """
    Created on Sat Apr 14 10:01:27 2018
    
    @author: Administrator
    """
    # -*- coding: utf-8 -*-  
    """ 
    Created on Tue Jan 16 00:52:02 2018 
    @author: Xiang Guo 
    将文件夹内所有XML文件的信息记录到CSV文件中 
    """  
      
    import os  
    import glob  
    import pandas as pd  
    import xml.etree.ElementTree as ET  
    
    #XML文件路径
    pathStr='F:\模型训练\img\train';
      
    os.chdir(pathStr)  
    path = pathStr  
      
    def xml_to_csv(path):  
        xml_list = []  
        for xml_file in glob.glob(path + '/*.xml'):  
            tree = ET.parse(xml_file)  
            root = tree.getroot()  
            for member in root.findall('object'):  
                value = (root.find('filename').text,  
                         int(root.find('size')[0].text),  
                         int(root.find('size')[1].text),  
                         member[0].text,  
                         int(member[4][0].text),  
                         int(member[4][1].text),  
                         int(member[4][2].text),  
                         int(member[4][3].text)  
                         )  
                xml_list.append(value)  
        column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']  
        xml_df = pd.DataFrame(xml_list, columns=column_name)  
        return xml_df  
      
      
    def main():  
        image_path = path  
        xml_df = xml_to_csv(image_path)  
        xml_df.to_csv('person.csv', index=None)  
        print('Successfully converted xml to csv.')  
      
      
    main()  
    View Code

      2、打开python generate_tfrecord.py,将对应的label改成自己的类别,python generate_tfrecord.py --csv_input=data/person_train.csv  --output_path=data/person_train.record,输入对应train、test.csv文件路径,生成对应tfrecord数据文件。

    # -*- coding: utf-8 -*-
    """
    Created on Sat Apr 14 10:04:27 2018
    
    @author: Administrator
    """
    
    # -*- coding: utf-8 -*-  
    """ 
    由CSV文件生成TFRecord文件 
    """  
      
    """ 
    Usage: 
      # From tensorflow/models/ 
      # Create train data: 
      python csv_to_TFRecords.py --csv_input=data/train_labels.csv  --output_path=data/person_train.record 
      # Create test data: 
      python csv_to_TFRecords.py --csv_input=data/test_labels.csv  --output_path=test.record 
    """  
      
      
      
    import os  
    import io  
    import pandas as pd  
    import tensorflow as tf  
      
    from PIL import Image  
    from object_detection.utils import dataset_util  
    from collections import namedtuple, OrderedDict  
      
    #这改成object_detection路径
    os.chdir('F:\模型训练\models-master\research\object_detection\')  
      
    flags = tf.app.flags  
    flags.DEFINE_string('csv_input', '', 'Path to the CSV input')  
    flags.DEFINE_string('output_path', '', 'Path to output TFRecord')  
    FLAGS = flags.FLAGS  
      
      
    # TO-DO replace this with label map  
    #注意将对应的label改成自己的类别!!!!!!!!!!  
    def class_text_to_int(row_label):  
        if row_label == 'person':  
            return 1  
        else:  
            None  
      
      
    def split(df, group):  
        data = namedtuple('data', ['filename', 'object'])  
        gb = df.groupby(group)  
        return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]  
      
      
    def create_tf_example(group, path):  
        with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:  
            encoded_jpg = fid.read()  
        encoded_jpg_io = io.BytesIO(encoded_jpg)  
        image = Image.open(encoded_jpg_io)  
        width, height = image.size  
      
        filename = group.filename.encode('utf8')  
        image_format = b'jpg'  
        xmins = []  
        xmaxs = []  
        ymins = []  
        ymaxs = []  
        classes_text = []  
        classes = []  
      
        for index, row in group.object.iterrows():  
            xmins.append(row['xmin'] / width)  
            xmaxs.append(row['xmax'] / width)  
            ymins.append(row['ymin'] / height)  
            ymaxs.append(row['ymax'] / height)  
            classes_text.append(row['class'].encode('utf8'))  
            classes.append(class_text_to_int(row['class']))  
      
        tf_example = tf.train.Example(features=tf.train.Features(feature={  
            'image/height': dataset_util.int64_feature(height),  
            'image/width': dataset_util.int64_feature(width),  
            'image/filename': dataset_util.bytes_feature(filename),  
            'image/source_id': dataset_util.bytes_feature(filename),  
            'image/encoded': dataset_util.bytes_feature(encoded_jpg),  
            'image/format': dataset_util.bytes_feature(image_format),  
            'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),  
            'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),  
            'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),  
            'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),  
            'image/object/class/text': dataset_util.bytes_list_feature(classes_text),  
            'image/object/class/label': dataset_util.int64_list_feature(classes),  
        }))  
        return tf_example  
      
      
    def main(_):  
        writer = tf.python_io.TFRecordWriter(FLAGS.output_path)  
        path = os.path.join(os.getcwd(), 'images')  
        examples = pd.read_csv(FLAGS.csv_input)  
        grouped = split(examples, 'filename')  
        for group in grouped:  
            tf_example = create_tf_example(group, path)  
            writer.write(tf_example.SerializeToString())  
      
        writer.close()  
        output_path = os.path.join(os.getcwd(), FLAGS.output_path)  
        print('Successfully created the TFRecords: {}'.format(output_path))  
      
      
    if __name__ == '__main__':  
        tf.app.run()  
    View Code

      3、打开或下载ssd_mobilenet_v1_coco.config配置文件,修改训练、测试数据路径、分类数、批次图片数量(避免超出显存,稍微小点),放置在models-master esearchobject_detection raining文件夹下。

    # SSD with Mobilenet v1 configuration for MSCOCO Dataset.
    # Users should configure the fine_tune_checkpoint field in the train config as
    # well as the label_map_path and input_path fields in the train_input_reader and
    # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
    # should be configured.
    
    model {
      ssd {
      #训练的数据类数
        num_classes: 1
        box_coder {
          faster_rcnn_box_coder {
            y_scale: 10.0
            x_scale: 10.0
            height_scale: 5.0
            width_scale: 5.0
          }
        }
        matcher {
          argmax_matcher {
            matched_threshold: 0.5
            unmatched_threshold: 0.5
            ignore_thresholds: false
            negatives_lower_than_unmatched: true
            force_match_for_each_row: true
          }
        }
        similarity_calculator {
          iou_similarity {
          }
        }
        anchor_generator {
          ssd_anchor_generator {
            num_layers: 6
            min_scale: 0.2
            max_scale: 0.95
            aspect_ratios: 1.0
            aspect_ratios: 2.0
            aspect_ratios: 0.5
            aspect_ratios: 3.0
            aspect_ratios: 0.3333
          }
        }
        image_resizer {
          fixed_shape_resizer {
            height: 300
             300
          }
        }
        box_predictor {
          convolutional_box_predictor {
            min_depth: 0
            max_depth: 0
            num_layers_before_predictor: 0
            use_dropout: false
            dropout_keep_probability: 0.8
            kernel_size: 1
            box_code_size: 4
            apply_sigmoid_to_scores: false
            conv_hyperparams {
              activation: RELU_6,
              regularizer {
                l2_regularizer {
                  weight: 0.00004
                }
              }
              initializer {
                truncated_normal_initializer {
                  stddev: 0.03
                  mean: 0.0
                }
              }
              batch_norm {
                train: true,
                scale: true,
                center: true,
                decay: 0.9997,
                epsilon: 0.001,
              }
            }
          }
        }
        feature_extractor {
          type: 'ssd_mobilenet_v1'
          min_depth: 16
          depth_multiplier: 1.0
          conv_hyperparams {
            activation: RELU_6,
            regularizer {
              l2_regularizer {
                weight: 0.00004
              }
            }
            initializer {
              truncated_normal_initializer {
                stddev: 0.03
                mean: 0.0
              }
            }
            batch_norm {
              train: true,
              scale: true,
              center: true,
              decay: 0.9997,
              epsilon: 0.001,
            }
          }
        }
        loss {
          classification_loss {
            weighted_sigmoid {
            }
          }
          localization_loss {
            weighted_smooth_l1 {
            }
          }
          hard_example_miner {
            num_hard_examples: 3000
            iou_threshold: 0.99
            loss_type: CLASSIFICATION
            max_negatives_per_positive: 3
            min_negatives_per_image: 0
          }
          classification_weight: 1.0
          localization_weight: 1.0
        }
        normalize_loss_by_num_matches: true
        post_processing {
          batch_non_max_suppression {
            score_threshold: 1e-8
            iou_threshold: 0.6
            max_detections_per_class: 100
            max_total_detections: 100
          }
          score_converter: SIGMOID
        }
      }
    }
    
    train_config: {
      batch_size: 1#训练批次
      optimizer {
        rms_prop_optimizer: {
          learning_rate: {
            exponential_decay_learning_rate {
              initial_learning_rate: 0.004
              decay_steps: 800720
              decay_factor: 0.95
            }
          }
          momentum_optimizer_value: 0.9
          decay: 0.9
          epsilon: 1.0
        }
      }
      #这两行注释
      #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
      #from_detection_checkpoint: true
    
      # Note: The below line limits the training process to 200K steps, which we
      # empirically found to be sufficient enough to train the pets dataset. This
      # effectively bypasses the learning rate schedule (the learning rate will
      # never decay). Remove the below line to train indefinitely.
      num_steps: 200000
      data_augmentation_options {
        random_horizontal_flip {
        }
      }
      data_augmentation_options {
        ssd_random_crop {
        }
      }
    }
    #训练数据
    train_input_reader: {
      tf_record_input_reader {
        input_path: "data/person_train.record"
      }
      label_map_path: "data/person.pbtxt"
    }
    
    eval_config: {
      num_examples: 8000
      # Note: The below line limits the evaluation process to 10 evaluations.
      # Remove the below line to evaluate indefinitely.
      max_evals: 10
    }
    #测试数据
    eval_input_reader: {
      tf_record_input_reader {
        input_path: "data/person_test.record"
      }
      label_map_path: "data/person.pbtxt"
      shuffle: false
      num_readers: 1
    }
    View Code

      4、在data文件下创建对应.pbtxt文件,修改类型对应的ID序号,id序号注意与前面创建CSV文件时保持一致。

    item {  
      id: 1  
      name: 'person'  
    }  
      
    item {  
      id: 2  
      name: 'car'  
    }

    【训练模型】

      1、在models-master esearchobject_detection目录下运行python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config 

      

      2、等待loss稳定在一个比较小的值之间,则可以停止训练。(直接关闭窗口以上即可)

      3、可视化操作:在models-master esearchobject_detection文件夹下,运行tensorboard --logdir='training' ,然后在浏览器中输入localhost:6006即可查看模型训练的各项参数情况。

    4、Anaconda Prompt 定位到  models esearchobject_detection 文件夹下,运行

    python export_inference_graph.py  --input_type image_tensor  --pipeline_config_path training/ssd_mobilenet_v1_coco.config   --trained_checkpoint_prefix training/model.ckpt-31012   --output_directory person_vehicle_inference_graph 

      trained_checkpoint_prefix training/model.ckpt-31012 这个checkpoint(.ckpt-后面的数字)可以在training文件夹下找到你自己训练的模型的情况,填上对应的数字(如果有多个,选最大的)。
      output_directory tv_vehicle_inference_graph 改成自己的名字

      运行完后,可以在person_vehicle_inference_graph (这是我的名字)文件夹下发现若干文件,有saved_model、checkpoint、frozen_inference_graph.pb等。 .pb结尾的就是最重要的frozen model了,还记得第一大部分中frozen model吗?没错,就是我们在后面要用到的部分

    【测试模型】

      1、打开jupyter notebook,先复制object detection API自带的object_detection_tutorial.ipynb代码;

      2、将模型修改为刚刚导出的模型地址,以及pbtxt文件位置;

      3、设置测试图片路径

      4、运行

    源码获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,,即可获取资源下载链接

    更多资源获取,请关注公总号RaoRao1994

  • 相关阅读:
    4.单例模式
    3.适配器模式
    2.策略模式
    1.工厂模式
    机器学习
    何为技术领导力
    图像像素的算术操作
    图像对象创建和赋值的区别
    图像色彩空间转换
    notepad更改文档编码格式
  • 原文地址:https://www.cnblogs.com/raorao1994/p/8854941.html
Copyright © 2011-2022 走看看