一开始以为暴力搞,后来看了数据范围还以为要FFT,各种被虐,然后Orz Seter大神!!!
我只想到了前三位:a * b <=> 10^(log(a) + log(b)),于是把乘的数都先log了最后再变回去就可以了。。。
然后后九位的方法:
Seter:"对于素数a,在N!中出现了N / a + N / a ^ 2+...次"
于是C(M, N) = N! / M! / (N - M)!就可以求每个质因数出现的次数,搞定!
1 /************************************************************** 2 Problem: 1300 3 User: rausen 4 Language: C++ 5 Result: Accepted 6 Time:164 ms 7 Memory:1792 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 #include <cmath> 12 #include <algorithm> 13 14 using namespace std; 15 typedef long long LL; 16 17 int n, m; 18 LL ans = 1; 19 bool p[1000001]; 20 21 int main(){ 22 scanf("%d%d", &n, &m); 23 m = min(m, n - m); 24 25 int i, j, x, y, c, s; 26 double k = 0, f = 1; 27 for (i = 2; i <= n; ++i) 28 if (!p[i]){ 29 for (j = n, x = n - m, y = m; j;){ 30 c = (j /= i) - (x /= i) - (y /= i), s = i; 31 for (c <<= 1; c >>= 1; s *= s) 32 if (c & 1) ans *= s, ans %= (LL) 1e12; 33 } 34 if (i <= 1000) 35 for (j = i * i; j <= n; j += i) 36 p[j] = 1; 37 } 38 for (i = 1; i <= m; ++i){ 39 if (f > 1e7) 40 k += log10(f), f = 1; 41 f = f * (n - m + i) / i; 42 } 43 k += log10(f); 44 45 if (k < 13) printf("%lld ", ans); 46 else printf("%d...%09lld ", (int) (pow(10, k - floor(k) + 2) + 1e-5), ans % (int) 1e9); 47 return 0; 48 }
p.s.话说Seter竟然可以C、C++混用,真是碉堡了。。。