zoukankan      html  css  js  c++  java
  • BZOJ3933 [CQOI2015]多项式

    $sum_{k = 0} ^ {n} a_kx^k = sum_{k = 0} ^ {n} b_k(x - t)^k Leftrightarrow sum_{k = 0} ^ {n} a_k(x + t)^k = sum_{k = 0} ^ {n} b_kx^k$

    把式子左边用二项式定理展开:

    $b_m=sum_{k=m}^nC_k^{k-m}t^{k-m}a_k\=sum_{k=0}^{n-m}C_{m+k}^k t^k a_{m+k}$

    注意到$n - m leq 5$,然后。。。然后就没有然后了

    出题人都是*****!

      1 /**************************************************************
      2     Problem: 3933
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:324 ms
      7     Memory:1148 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <cstring>
     12 #include <algorithm>
     13  
     14 using namespace std;
     15 typedef long long ll;
     16 const int Len = 2e3 + 5;
     17 const int N = 3e3 + 5;
     18 const ll base = 1e9;
     19 const int mod = 3389;
     20  
     21 inline void print(int t, bool f);
     22  
     23 struct Big {
     24     ll x[Len];
     25     int len;
     26     Big(ll _ = 0) {
     27         memset(x, 0, sizeof(x));
     28         x[len = 1] = _;
     29     }
     30      
     31     inline ll& operator [] (int i) {
     32         return x[i];
     33     }
     34      
     35     inline void get() {
     36         static char st[N];
     37         static int i, l, tmp;
     38         memset(x, 0, sizeof(x));
     39         gets(st + 1), l = strlen(st + 1);
     40         for (i = l; i; --i) {
     41             if ((l - i) % 9 == 0) tmp = 1;
     42             x[(l - i) / 9 + 1] += 1ll * (st[i] - '0') * tmp, tmp *= 10;
     43         }
     44         len = (l - 1) / 9 + 1;
     45     }
     46     inline void put(char ch = '
    ') {
     47         static int i;
     48         for (print(x[len], 0), i = len - 1; i; --i)
     49             print(x[i], 1);
     50         putchar(ch);
     51     }
     52      
     53     inline Big operator + (const Big &b) const {
     54         static Big res;
     55         static int i;
     56         res = 0, res.len = max(len, b.len);
     57         for (i = 1; i <= res.len; ++i) {
     58             res[i] += x[i] + b.x[i];
     59             if (res[i] >= base)
     60                 res[i] -= base, ++res[i + 1];
     61         }
     62         if (res[res.len + 1]) ++res.len;
     63         while (!res[res.len]) --res.len;
     64         return res;
     65     }
     66     inline Big& operator += (const Big &b) {
     67         return *this = *this + b;
     68     }
     69     inline Big& operator ++() {
     70         return *this += 1;
     71     }
     72      
     73     inline ll operator - (const Big &b) {
     74         static int i;
     75         static ll res;
     76         for (res = 0, i = len; i; --i)
     77             res = res * base + x[i] - b.x[i];
     78         return res;
     79     }
     80      
     81     inline Big operator * (const Big &b) const {
     82         static Big res;
     83         static int i, j;
     84         res = 0, res.len = len + b.len;
     85         for (i = 1; i <= len; ++i)
     86             for (j = 1; j <= b.len; ++j) {
     87                 res[i + j - 1] += x[i] * b.x[j];
     88                 res[i + j] += res[i + j - 1] / base, res[i + j - 1] %= base;
     89             }
     90         for (i = 1; i <= res.len; ++i)
     91             res[i + 1] += res[i] / base, res[i] %= base;
     92         while (!res[res.len] && res.len) --res.len;
     93         if (!res.len) res.len = 1;
     94         return res;
     95     }
     96     inline Big& operator *= (const Big &b) {
     97         *this = *this * b;
     98     }
     99      
    100     inline Big operator / (int t) const {
    101         static Big res;
    102         static int i;
    103         res = *this;
    104         for (i = len; i; --i)
    105             res[i - 1] += (res[i] % t) * base, res[i] /= t;
    106         res[0] = 0;
    107         while (!res[res.len] && res.len) --res.len;
    108         if (!res.len) res.len = 1;
    109         return res;
    110     }
    111     inline Big& operator /= (int t) {
    112         return *this = *this / t;
    113     }
    114      
    115     ll operator % (int t) const {
    116         static int i;
    117         static ll res;
    118         for (res = 0, i = len; i; --i)
    119             res = (res * base + x[i]) % t;
    120         return res;
    121     }
    122 } n, m, ans, C, p, t;
    123  
    124 inline int pow(int x, int y) {
    125     static int res;
    126     res = 1;
    127     while (y) {
    128         if (y & 1) res = res * x % mod;
    129         x = x * x % mod, y >>= 1;
    130     }
    131     return res;
    132 }
    133  
    134 inline int A(const Big &t) {
    135     return (209 * pow(1234, t % (mod - 1)) + 3181) % mod;
    136 }
    137  
    138 int main() {
    139     int i, tmp;
    140     n.get(), t.get(), m.get();
    141     tmp = n - m, C = p = 1, ans = 0;
    142     for (i = 0; i <= tmp; ++i, ++m) {
    143         if (i) C = (C * m) / i, p *= t;
    144         ans += C * p * A(m);
    145     }
    146     ans.put();
    147     return 0;
    148 }
    149  
    150 inline void print(int t, bool f) {
    151     static int tmp, tot, pr[10];
    152     if (t < 0) putchar('-'), tmp = -t;
    153     else tmp = t;
    154     tot = 0;
    155     while (tmp)
    156         pr[++tot] = tmp % 10, tmp /= 10;
    157     if (f) for (tmp = 9 - tot; tmp; --tmp) putchar('0');
    158     while (tot) putchar(pr[tot--] + '0');
    159 }
    View Code
    By Xs酱~ 转载请说明 博客地址:http://www.cnblogs.com/rausen
  • 相关阅读:
    拓扑排序
    数论初步(费马小定理)
    HDU
    HDU
    八月馒头
    萌新仓鼠,参上!
    新姿势
    字典树
    HDU
    Codeforce
  • 原文地址:https://www.cnblogs.com/rausen/p/4456978.html
Copyright © 2011-2022 走看看