zoukankan      html  css  js  c++  java
  • [ DLPytorch ] 文本分类&图像增强

    图像增强

    图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增广技术功不可没。本节我们将讨论这个在计算机视觉里被广泛使用的技术。

    常用的图像增广方法

    1. 翻转和裁剪
      左右翻转图像通常不改变物体的类别。它是最早也是最广泛使用的一种图像增广方法。下面我们通过torchvision.transforms模块创建RandomHorizontalFlip实例来实现一半概率的图像水平(左右)翻转。
      上下翻转不如左右翻转通用。但是至少对于样例图像,上下翻转不会造成识别障碍。下面我们创建RandomVerticalFlip实例来实现一半概率的图像垂直(上下)翻转。
    2. 变化颜色
      另一类增广方法是变化颜色。我们可以从4个方面改变图像的颜色:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。我们也可以随机变化图像的色调。类似地,我们也可以随机变化图像的对比度。
      我们也可以同时设置如何随机变化图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。
    3. 叠加多个图像增广方法
      实际应用中我们会将多个图像增广方法叠加使用。我们可以通过Compose实例将上面定义的多个图像增广方法叠加起来,再应用到每张图像之上。
  • 相关阅读:
    NX二次开发-UFUN获取当前主要版本的版本号
    NX二次开发-UFUN创建图纸注释uc5540
    VC++ADO/COM,put_LeftMargin设置纸张上下左右边距的大小
    VC++ADO/COM,put_Orientation组件设置纸张方向0默认1纵向2横向
    常用的数据拼接方法(不断更新中)
    去重对象数组
    将对象数组中指定键值赋给另一个数组并对更改对象数组中的key
    CSS3动态计算公式——calc()的坑
    @PostConstruct注解
    java操作Redis缓存设置过期时间
  • 原文地址:https://www.cnblogs.com/recoverableTi/p/12363629.html
Copyright © 2011-2022 走看看