zoukankan      html  css  js  c++  java
  • BZOJ3160:万径人踪灭(FFT,Manacher)

    Solution

    $ans=$回文子序列$-$回文子串的数目。

    后者可以用$manacher$直接求。

    前者设$f[i]$表示以$i$为中心的对称的字母对数。

    那么回文子序列的数量也就是$sum_{i=0}^{n-1}2^{f[i]-1}$

    构造两个数组$a[i],b[i]$。若第$i$位为$a$,那么$a[i]=1$,否则$b[i]=1$。

    可以发现$a$数组自身卷积就是$a$字母对$f$数组的贡献,$b$数组同理。

    卷下$a$,卷下$b$,对应位置求和,就是$f$数组。

    因为在卷积中每对对称字符被算了两次,而自己和自己关于自己对称只算了一次,所以要把答案除2向上取整。

    Code

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<cmath>
     5 #define N (400009)
     6 #define LL long long
     7 #define MOD (1000000007)
     8 using namespace std;
     9 
    10 int n,fn,l,tot,r[N],len[N],p[N];
    11 LL Re,fun;
    12 char s[N],st[N];
    13 double pi=acos(-1.0);
    14 struct complex
    15 {
    16     double x,y;
    17     complex (double xx=0,double yy=0)
    18     {
    19         x=xx; y=yy;
    20     }
    21 }a[N],b[N];
    22 
    23 complex operator + (complex a,complex b) {return complex(a.x+b.x,a.y+b.y);}
    24 complex operator - (complex a,complex b) {return complex(a.x-b.x,a.y-b.y);}
    25 complex operator * (complex a,complex b) {return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
    26 complex operator / (complex a,double b) {return complex(a.x/b,a.y/b);}
    27 
    28 void FFT(int n,complex *a,int opt)
    29 {
    30     for (int i=0; i<n; ++i)
    31         if (i<r[i]) swap(a[i],a[r[i]]);
    32     for (int k=1; k<n; k<<=1)
    33     {
    34         complex wn=complex(cos(pi/k),opt*sin(pi/k));
    35         for (int i=0; i<n; i+=k<<1)
    36         {
    37             complex w=complex(1,0);
    38             for (int j=0; j<k; ++j,w=w*wn)
    39             {
    40                 complex x=a[i+j], y=w*a[i+j+k];
    41                 a[i+j]=x+y; a[i+j+k]=x-y;
    42             }
    43         }
    44     }
    45     if (opt==-1) for (int i=0; i<n; ++i) a[i]=a[i]/n;
    46 }
    47 
    48 void Manacher()
    49 {
    50     s[++tot]='('; s[++tot]='#';
    51     for (int i=0; i<n; ++i)
    52         s[++tot]=st[i], s[++tot]='#';
    53     s[++tot]=')';
    54     int maxn=0,mid=0,x;
    55     for (int i=1; i<=tot; ++i)
    56     {
    57         if (i>maxn) x=1;
    58         else x=min(maxn-i+1,len[mid*2-i]);
    59         while (s[i+x]==s[i-x]) x++;
    60         len[i]=x;
    61         if (i+x-1>maxn) maxn=i+x-1, mid=i;
    62         fun=(fun+len[i]/2)%MOD;
    63     }
    64 }
    65 
    66 int main()
    67 {
    68     p[0]=1;
    69     for (int i=1; i<=100000; ++i)
    70         p[i]=p[i-1]*2%MOD;
    71     scanf("%s",st);    n=strlen(st);
    72     Manacher();
    73 
    74     fn=1;
    75     while (fn<=n+n) fn<<=1, l++;
    76     for (int i=0; i<fn; ++i)
    77         r[i]=(r[i>>1]>>1) | ((i&1)<<(l-1));
    78     for (int i=0; i<n; ++i)
    79         if (st[i]=='a') a[i].x=1;
    80         else b[i].x=1;
    81     FFT(fn,a,1); FFT(fn,b,1);
    82     for (int i=0; i<fn; ++i)
    83         a[i]=a[i]*a[i], b[i]=b[i]*b[i];
    84     FFT(fn,a,-1); FFT(fn,b,-1);
    85     for (int i=0; i<fn; ++i)
    86     {
    87         int x=(a[i].x+b[i].x+0.5);
    88         x=(x+1)>>1;
    89         Re=(Re+p[x]-1)%MOD;
    90     }
    91     printf("%lld
    ",(Re-fun+MOD)%MOD);
    92 }
  • 相关阅读:
    iOS开发~UI布局(二)storyboard中autolayout和size class的使用详解
    iOS开发~UI布局(一)初探Size Class
    OC登陆界面登陆按钮动画
    Git学习 --> 个人常用命令add,commit以及push
    Git使用之设置SSH Key
    【iOS开发】多屏尺的自动适配 AutoLayout (纯代码方式)
    iOS网络检测Reachability 使用 Demo,可检测2、3、4G
    iOS提醒用户进入设置界面进行重新授权通知定位等功能
    iOS中 @synthesize 和 @dynamic 区别
    iOS 开发笔记
  • 原文地址:https://www.cnblogs.com/refun/p/10091484.html
Copyright © 2011-2022 走看看