zoukankan      html  css  js  c++  java
  • MapReduce实例-NASA博客数据频度简单分析

    环境:
      Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境,gnuplot,

      数据:http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

    方案目标:

      提供的blog数据是简单的文件请求访问数据

           205.189.154.54 - - [01/Jul/1995:00:00:29 -0400] "GET /shuttle/countdown/count.gif HTTP/1.0" 200 40310

      每一行如上所示的规则。目标是计算每个文件的访问次数,以及访问次数的频率分布

    思路:
      这个目标其实非常容易实现。其中涉及的最大的一个知识点是关于job的依赖。在这个目标的解决方案中,可以使用两套MapReduce,前一个计算出每个文件的访问次数,后一个对频率进行统计,最后利用gnuplot工具绘制分布图形。

     一、MapReduce程序

     在这套程序中,MapReduce的编写很简单,就不写了。主要是主程序的框架写好就行了。

      

    package ren.snail;
    
    import java.util.regex.Matcher;
    import java.util.regex.Pattern;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.hdfs.util.EnumCounters.Map;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.jobcontrol.JobControl;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
    import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    import com.sun.xml.internal.ws.api.model.wsdl.editable.EditableWSDLBoundFault;
    
    public class Main extends Configured implements Tool {
    
        public static void main(String[] args) throws Exception {
            int result = ToolRunner.run(new Configuration(), new Main(), args);
        }
    
        @Override
        public int run(String[] arg0) throws Exception {
            // TODO Auto-generated method stub
            Configuration configuration = getConf();
    
            Job job1 = new Job(configuration, "groupby");
            job1.setJarByClass(Main.class);
    
            FileInputFormat.addInputPath(job1, new Path(arg0[0]));
            FileOutputFormat.setOutputPath(job1, new Path(arg0[1]));
    
            job1.setMapperClass(GroupMapper.class);
            job1.setReducerClass(GroupReducer.class);
    
            job1.setOutputFormatClass(TextOutputFormat.class);
            job1.setOutputKeyClass(Text.class);   
            job1.setOutputValueClass(IntWritable.class);
    
            Job job2 = new Job(configuration, "sort");
            job2.setJarByClass(Main.class);
    
            FileInputFormat.addInputPath(job2, new Path(arg0[1] + "/part-r-00000"));
            FileOutputFormat.setOutputPath(job2, new Path(arg0[1]+"/out2"));
    
            job2.setMapperClass(SortMapper.class);
            job2.setReducerClass(SortReducer.class);
            job2.setInputFormatClass(KeyValueTextInputFormat.class);
         
    
            job2.setOutputFormatClass(TextOutputFormat.class);
            job2.setOutputKeyClass(IntWritable.class);    //这里定义的输出格式是map输出到reduce的格式,不是reduce输出到HDFS的格式
            job2.setOutputValueClass(IntWritable.class);
    
            ControlledJob controlledJob1 = new ControlledJob(job1.getConfiguration());
            ControlledJob controlledJob2 = new ControlledJob(job2.getConfiguration());
    
            controlledJob2.addDependingJob(controlledJob1);   //job依赖,使得job2利用Job1产生的数据
            JobControl jobControl = new JobControl("JobControlDemoGroup");
            jobControl.addJob(controlledJob1);
            jobControl.addJob(controlledJob2);
    
            Thread jobControlThread = new Thread(jobControl);
            jobControlThread.start();
    
            while (!jobControl.allFinished()) {
                Thread.sleep(500);
            }
    
            jobControl.stop();
             
    
            return  0;
        }
    
    }

    最后,我们得到了想要的数据,还有频率分布的数据。接下来使用gunplot来进行绘制

    二、GnuPlot

    gnuplot的安装很简单,采用 yum install gunplot就能安装。

    安装好后,编写代码如下:

    set terminal png
    set output "freqdist.png"     //输出文件名
    
    set title "Frequnecy Distribution of Hits by Url";  //绘制的图像名称
    set ylabel "Number of Hits";
    set xlabel "Urls (Sorted by hits)";
    set key left top
    set log y
    set log x
    
    plot "~/test/data.txt" using 2 title "Frequency" with linespoints

    可能出现问题:

    Could not find/open font when opening font "arial", using internal non-scalable font

    解决方案:

    yum install wqy-zenhei-fonts.noarch  #其实这个是安装字体,但是一般都已经安装了的

    进入gnuplot的shell,输入set term png font "/usr/share/fonts/wqy-zenhei/wqy-zenhei.ttc" 10   #设置png图片的字体,可能会输出

    Options are 'nocrop font /usr/share/fonts/wqy-zenhei/wqy-zenhei.ttc 12 ',不用管,在运行程序,其实你已经生成了你想要的图片

     不仅可以画散点图,还可以有直方图折线图等等,主要是对plot程序的修改,就不在一一实验了

  • 相关阅读:
    2020-12-13 助教一周总结(第十五周)
    2020-12-06 助教一周总结(第十四周)
    2020-11-29 助教一周总结(第十三周)
    2020-11-22 助教一周总结(第十二周)
    2020-11-15 助教一周总结(第十一周)
    暗时间读后感
    2020-11-08 助教一周总结(第十周)
    软件工程助教总结
    2020-12-27助教一周总结(第十七周)
    2020-12-20助教一周总结(第十六周)
  • 原文地址:https://www.cnblogs.com/ren-jie/p/5397866.html
Copyright © 2011-2022 走看看