zoukankan      html  css  js  c++  java
  • python_机器学习_监督学习模型_决策树

     

    决策树模型练习:https://www.kaggle.com/c/GiveMeSomeCredit/overview

    1. 监督学习--分类

    机器学习肿分类和预测算法的评估:

      a. 准确率

      b.速度

      c. 强壮行

      d.可规模性

      e. 可解释性

    2. 什么是决策树/判定树(decision tree)?

    https://scikit-learn.org/stable/modules/tree.html

     

     3. 熵(entropy)概念:

     变量的不确定越大,熵也就越大。

    4. 决策树归纳算法(ID3)

    5. 其他算法及优缺点 

    6. 决策树的应用

     

    生成后的决策树

     

    逻辑代码:

    整理好的代码 --》

    python3.6.3

    Successfully installed joblib-0.13.2 numpy-1.16.4 scikit-learn-0.21.2 scipy-1.3.0

    # -*- coding:utf-8 -*-
    from sklearn.feature_extraction import DictVectorizer
    import csv
    from sklearn import preprocessing
    from sklearn import tree  # 要求是数值型的值
    from sklearn.externals.six import StringIO
    import pandas as pd
    
    """
    注意: 决策树要求要数值型的值,不能是字符串类型的值
    例如: no, yes这样的值是不允许的
    需要转换成矩阵
    ====================================
    age            income    student
    youth        high    no
    youth        high    no
    middle_aged    high    no
    senior        medium    no
    senior        low    yes
    ====================================
    
    比如上面这种数据:
    youth    middle_aged        senior         high    medium    low    ......
    1        0                0            1        0        0
    1        0                0            1        0        0
    .....
    
    """
    
    fileName = r"C:UsersAdministratorDesktopdata.xlsx"
    data = pd.read_excel(fileName)
    # 删除id序列
    del data["RID"]
    # headers
    headers = data.columns.values
    # print(headers)
    # ["RID", 'age'.....]
    
    # 样本量
    # print(len(data))
    
    # dict格式化单个样本
    # print(dict(data.ix[1]))
    # 单个样本最后一个数据
    # print(data.ix[1][-1])
    
    
    featureList = []
    labelList = []
    for row in range(len(data)):
        rowData = data.ix[row]
        labelList.append(rowData[-1])
        featureList.append(dict(rowData))
    
    # print(featureList)
    
    # [
    #    {"credit_rating": "fair", "age": "youth"},
    #    .... #作用,方便转换成矩阵。将数据转换成对象
    # ]
    # print(labelList)
    # ['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']
    
    
    # =========<格式化数据,转换成decision tree需要的格式模型>============
    
    vec = DictVectorizer()
    dummyX = vec.fit_transform(featureList).toarray()
    
    print("dummyX:" + str(dummyX))  # 转换成矩阵的数据了二维
    print(vec.get_feature_names())
    
    print("labelList: " + str(labelList))
    
    lb = preprocessing.LabelBinarizer()
    dummyY = lb.fit_transform(labelList)
    print("dummyY: " + str(dummyY))
    
    # ===========《决策树建模分析》=============
    
    clf = tree.DecisionTreeClassifier(criterion="entropy")
    clf = clf.fit(dummyX, dummyY)
    print("clf: ", str(clf))
    
    # # 存储决策树信息
    
    # # Graphviz 将dot转换成pdf的命令: dot -T pdf iris.dot -o output.pdf
    # # 可以查看decision tree 的形状了(看pdf的值)
    # with open(r"C:UsersAdministratorDesktopcodemechine_learningallElectronicInformationGainOri.dot", "w") as f:
    #     f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)
    
    
    # # 下面的代码属于预测的代码
    # # 属于转化后的矩阵数值,其实就是进行复制修改
    oneRowX = dummyX[2, :]
    print("oneRowX: " + str(oneRowX))
    
    newRowX = oneRowX
    
    # newRowX[0] = 1
    # newRowX[2] = 1
    print("newRowX: ", str(newRowX))
    
    predictedY = clf.predict([newRowX])
    # 预测 class_buys_labels的值
    print("predictedY: " + str(predictedY))
    View Code

    但这段代码不是特别通用,而且有bug, 需要修改,但基本逻辑是正确的

    # -*- coding:utf-8 -*-
    from sklearn.feature_extraction import DictVectorizer
    import csv
    from sklearn import preprocessing
    from sklearn import tree  # 要求是数值型的值
    from sklearn.externals.six import StringIO
    
    
    """
    注意: 决策树要求要数值型的值,不能是字符串类型的值
    例如: no, yes这样的值是不允许的
    需要转换成矩阵
    ====================================
    age            income    student
    youth        high    no
    youth        high    no
    middle_aged    high    no
    senior        medium    no
    senior        low    yes
    ====================================
    
    比如上面这种数据:
    youth    middle_aged        senior         high    medium    low    ......
    1        0                0            1        0        0
    1        0                0            1        0        0
    .....
    
    """
    
    
    allElectronicsData = open(r"C:UsersAdministratorDesktopdata.xlsx", 'r')
    reader = csv.reader(allElectronicsData)
    print(reader)
    headers = next(reader)
    
    print(headers)
    # ["RID", 'age'.....]
    
    featureList = []
    labelList = []
    for row in reader:
        labelList.append(row[len(row) - 1])
        rowDict = {}
        for i in range(1, len(row) - 1):
            rowDict[headers[i]] = row[i]
    
        featureList.append(rowDict)
    
    print(featureList)
    # [
    #    {"credit_rating": "fair", "age": "youth"},
    #    .... #作用,方便转换成矩阵。将数据转换成对象
    # ]
    
    vec = DictVectorizer()
    dummyX = vec.fit_transform(featureList).toarray()
    
    print("dummyX:" + str(dummyX))  # 转换成矩阵的数据了二维
    print(vec.get_feature_names())
    
    
    print("labelList: " + str(labelList))
    
    lb = preprocessing.LabelBinarizer()
    dummyY = lb.fit_transform(labelList)
    print("dummyY: " + str(dummyY))
    
    
    clf = tree.DecisionTreeClassifier(criterion="entropy")
    clf = clf.fit(dummyX, dummyY)
    print("clf: ", str(clf))
    
    # 存储决策树信息
    
    # Graphviz 将dot转换成pdf的命令: dot -T pdf iris.dot -o output.pdf
    # 可以查看decision tree 的形状了(看pdf的值)
    with open(r"C:UsersAdministratorDesktopcodemechine_learningallElectronicInformationGainOri.dot", "w") as f:
        f = tree.export_graphviz(clf, feature_names = vec.get_feature_names(), out_file = f)
    
    
    # 下面的代码属于预测的代码
    # 属于转化后的矩阵数值,其实就是进行复制修改
    oneRowX = dummyX[0, :]
    print("oneRowX: " + str(oneRowX))
    
    newRowX = oneRowX
    
    newRowX[0] = 1
    newRowX[2] = 0
    print("newRowX: ", str(newRowX))
    
    predictedY = clf.predicted(newRowX)
    # 预测 class_buys_labels的值
    predicted("predictedY: " + str(predictedY))
    
    
    
    
    if __name__ == '__main__':
        main()

  • 相关阅读:
    poj1877
    poj2163
    API hook 单步调试
    用VC++编写勾子程序(转)
    不使用DLL创建全局系统钩子
    接触DLL编写并实现线程注入和全局钩子
    根据RGB计算亮度
    !!!光线对视频识别技术的影响
    消息钩子函数入门篇
    “蓝脑”计划:人造大脑的可能性 文化·探索 CCTV_com
  • 原文地址:https://www.cnblogs.com/renfanzi/p/11078489.html
Copyright © 2011-2022 走看看