zoukankan      html  css  js  c++  java
  • 提供openssl -aes-256-cbc兼容加密/解密的简单python函数

    原文链接:http://joelinoff.com/blog/?p=885

    这里的示例显示了如何使用python以与openssl aes-256-cbc完全兼容的方式加密和解密数据。它是基于我在本网站上发布的C ++ Cipher类中所做的工作。它适用于python-2.7和python-3.x。

    关键思想是基于openssl生成密钥和iv密码的数据以及它使用的“Salted__”前缀的方式。

    因为我也掌握openssl的内部细节,所以先留着,等以后要是遇到需要了,在研究

    使用方法

    代码:

    #!/usr/bin/env python
    '''
    Implement openssl compatible AES-256 CBC mode encryption/decryption.
    
    This module provides encrypt() and decrypt() functions that are compatible
    with the openssl algorithms.
    
    This is basically a python encoding of my C++ work on the Cipher class
    using the Crypto.Cipher.AES class.
    
    URL: http://projects.joelinoff.com/cipher-1.1/doxydocs/html/
    '''
    
    # LICENSE
    #
    # MIT Open Source
    #
    # Copyright (c) 2014 Joe Linoff
    #
    # Permission is hereby granted, free of charge, to any person
    # obtaining a copy of this software and associated documentation files
    # (the "Software"), to deal in the Software without restriction,
    # including without limitation the rights to use, copy, modify, merge,
    # publish, distribute, sublicense, and/or sell copies of the Software,
    # and to permit persons to whom the Software is furnished to do so,
    # subject to the following conditions:
    #
    # The above copyright notice and this permission notice shall be
    # included in all copies or substantial portions of the Software.
    #
    # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
    # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
    # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
    # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
    # SOFTWARE.
    
    import argparse
    import base64
    import os
    import re
    import hashlib
    import inspect
    import sys
    from getpass import getpass
    from Crypto.Cipher import AES
    
    VERSION='1.2'
    
    
    # ================================================================
    # debug
    # ================================================================
    def _debug(msg, lev=1):
        '''
        Print a debug message with some context.
        '''
        sys.stderr.write('DEBUG:{} ofp {}
    '.format(inspect.stack()[lev][2], msg))
    
    
    # ================================================================
    # get_key_and_iv
    # ================================================================
    def get_key_and_iv(password, salt, klen=32, ilen=16, msgdgst='md5'):
        '''
        Derive the key and the IV from the given password and salt.
    
        This is a niftier implementation than my direct transliteration of
        the C++ code although I modified to support different digests.
    
        CITATION: http://stackoverflow.com/questions/13907841/implement-openssl-aes-encryption-in-python
    
        @param password  The password to use as the seed.
        @param salt      The salt.
        @param klen      The key length.
        @param ilen      The initialization vector length.
        @param msgdgst   The message digest algorithm to use.
        '''
        # equivalent to:
        #   from hashlib import <mdi> as mdf
        #   from hashlib import md5 as mdf
        #   from hashlib import sha512 as mdf
        mdf = getattr(__import__('hashlib', fromlist=[msgdgst]), msgdgst)
        password = password.encode('ascii', 'ignore')  # convert to ASCII
    
        try:
            maxlen = klen + ilen
            keyiv = mdf(password + salt).digest()
            tmp = [keyiv]
            while len(tmp) < maxlen:
                tmp.append( mdf(tmp[-1] + password + salt).digest() )
                keyiv += tmp[-1]  # append the last byte
            key = keyiv[:klen]
            iv = keyiv[klen:klen+ilen]
            return key, iv
        except UnicodeDecodeError:
            return None, None
    
    
    # ================================================================
    # encrypt
    # ================================================================
    def encrypt(password, plaintext, chunkit=True, msgdgst='md5'):
        '''
        Encrypt the plaintext using the password using an openssl
        compatible encryption algorithm. It is the same as creating a file
        with plaintext contents and running openssl like this:
    
        $ cat plaintext
        <plaintext>
        $ openssl enc -e -aes-256-cbc -base64 -salt \
            -pass pass:<password> -n plaintext
    
        @param password  The password.
        @param plaintext The plaintext to encrypt.
        @param chunkit   Flag that tells encrypt to split the ciphertext
                         into 64 character (MIME encoded) lines.
                         This does not affect the decrypt operation.
        @param msgdgst   The message digest algorithm.
        '''
        salt = os.urandom(8)
        key, iv = get_key_and_iv(password, salt, msgdgst=msgdgst)
        if key is None:
            return None
    
        # PKCS#7 padding
        padding_len = 16 - (len(plaintext) % 16)
        if isinstance(plaintext, str):
            padded_plaintext = plaintext + (chr(padding_len) * padding_len)
        else: # assume bytes
            padded_plaintext = plaintext + (bytearray([padding_len] * padding_len))
    
        # Encrypt
        cipher = AES.new(key, AES.MODE_CBC, iv)
        ciphertext = cipher.encrypt(padded_plaintext)
    
        # Make openssl compatible.
        # I first discovered this when I wrote the C++ Cipher class.
        # CITATION: http://projects.joelinoff.com/cipher-1.1/doxydocs/html/
        openssl_ciphertext = b'Salted__' + salt + ciphertext
        b64 = base64.b64encode(openssl_ciphertext)
        if not chunkit:
            return b64
    
        LINELEN = 64
        chunk = lambda s: b'
    '.join(s[i:min(i+LINELEN, len(s))]
                                    for i in range(0, len(s), LINELEN))
        return chunk(b64)
    
    
    # ================================================================
    # decrypt
    # ================================================================
    def decrypt(password, ciphertext, msgdgst='md5'):
        '''
        Decrypt the ciphertext using the password using an openssl
        compatible decryption algorithm. It is the same as creating a file
        with ciphertext contents and running openssl like this:
    
        $ cat ciphertext
        # ENCRYPTED
        <ciphertext>
        $ egrep -v '^#|^$' | \
            openssl enc -d -aes-256-cbc -base64 -salt -pass pass:<password> -in ciphertext
        @param password   The password.
        @param ciphertext The ciphertext to decrypt.
        @param msgdgst    The message digest algorithm.
        @returns the decrypted data.
        '''
    
        # unfilter -- ignore blank lines and comments
        if isinstance(ciphertext, str):
            filtered = ''
            nl = '
    '
            re1 = r'^s*$'
            re2 = r'^s*#'
        else:
            filtered = b''
            nl = b'
    '
            re1 = b'^\s*$'
            re2 = b'^\s*#'
            
        for line in ciphertext.split(nl):
            line = line.strip()
            if re.search(re1,line) or re.search(re2, line):
                continue
            filtered += line + nl
    
        # Base64 decode
        raw = base64.b64decode(filtered)
        assert(raw[:8] == b'Salted__' )
        salt = raw[8:16]  # get the salt
    
        # Now create the key and iv.
        key, iv = get_key_and_iv(password, salt, msgdgst=msgdgst)
        if key is None:
            return None
    
        # The original ciphertext
        ciphertext = raw[16:]
    
        # Decrypt
        cipher = AES.new(key, AES.MODE_CBC, iv)
        padded_plaintext = cipher.decrypt(ciphertext)
    
        if isinstance(padded_plaintext, str):
            padding_len = ord(padded_plaintext[-1])
        else:
            padding_len = padded_plaintext[-1]
        plaintext = padded_plaintext[:-padding_len]
        return plaintext
    
    # include the code above ...
    # ================================================================
    # _open_ios
    # ================================================================
    def _open_ios(args):
        '''
        Open the IO files.
        '''
        ifp = sys.stdin
        ofp = sys.stdout
    
        if args.input is not None:
            try:
                ifp = open(args.input, 'rb')
            except IOError:
                print('ERROR: cannot read file: {}'.format(args.input))
                sys.exit(1)
    
        if args.output is not None:
            try:
                ofp = open(args.output, 'wb')
            except IOError:
                print('ERROR: cannot write file: {}'.format(args.output))
                sys.exit(1)
    
        return ifp, ofp
    
    
    # ================================================================
    # _close_ios
    # ================================================================
    def _close_ios(ifp, ofp):
        '''
        Close the IO files if necessary.
        '''
        if ifp != sys.stdin:
            ifp.close()
    
        if ofp != sys.stdout:
            ofp.close()
    
    
    # ================================================================
    # _write
    # ================================================================
    def _write(ofp, out, newline=False):
        '''
        Write out the data in the correct format.
        '''
        if ofp == sys.stdout and isinstance(out, bytes):
            out = out.decode('utf-8', 'ignored')
            ofp.write(out)
            if newline:
                ofp.write('
    ')
        elif isinstance(out, str):
            ofp.write(out)
            if newline:
                ofp.write('
    ')
        else:  # assume bytes
            ofp.write(out)
            if newline:
                ofp.write(b'
    ')
        
    
    # ================================================================
    # _write
    # ================================================================
    def _read(ifp):
        '''
        Read the data in the correct format.
        '''
        return ifp.read()
    
    
    # ================================================================
    # _runenc
    # ================================================================
    def _runenc(args):
        '''
        Encrypt data.
        '''
        if args.passphrase is None:
            while True:
                passphrase = getpass('Passphrase: ')
                tmp = getpass('Re-enter passphrase: ')
                if passphrase == tmp:
                    break
                print('')
                print('Passphrases do not match, please try again.')
        else:
            passphrase = args.passphrase
    
        ifp, ofp = _open_ios(args)
        text = _read(ifp)
        out = encrypt(passphrase, text, msgdgst=args.msgdgst)
        _write(ofp, out, True)
        _close_ios(ifp, ofp)
    
    
    # ================================================================
    # _rundec
    # ================================================================
    def _rundec(args):
        '''
        Decrypt data.
        '''
        if args.passphrase is None:
            passphrase = getpass('Passphrase: ')
        else:
            passphrase = args.passphrase
    
        ifp, ofp = _open_ios(args)
        text = _read(ifp)
        out = decrypt(passphrase, text, msgdgst=args.msgdgst)
        _write(ofp, out, False)
        _close_ios(ifp, ofp)
    
    
    # ================================================================
    # _runtest
    # ================================================================
    def _runtest(args):
        '''
        Run a series of iteration where each iteration generates a random
        password from 8-32 characters and random text from 20 to 256
        characters. The encrypts and decrypts the random data. It then
        compares the results to make sure that everything works correctly.
    
        The test output looks like this:
    
        $ crypt 2000
        2000 of 2000 100.00%  15 139 2000    0
        $ #     ^    ^        ^  ^   ^       ^
        $ #     |    |        |  |   |       +-- num failed
        $ #     |    |        |  |   +---------- num passed
        $ #     |    |        |  +-------------- size of text for a test
        $ #     |    |        +----------------- size of passphrase for a test
        $ #     |    +-------------------------- percent completed
        $ #     +------------------------------- total
        # #+------------------------------------ current test
    
        @param args  The args parse arguments.
        '''
        import string
        import random
        from random import randint
    
        # Encrypt/decrypt N random sets of plaintext and passwords.
        num = args.test
        ofp = sys.stdout
        if args.output is not None:
            try:
                ofp = open(args.output, 'w')
            except IOError:
                print('ERROR: can open file for writing: {}'.format(args.output))
                sys.exit(1)
    
        chset = string.printable
        passed = 0
        failed = []
        maxlen = len(str(num))
        for i in range(num):
            ran1 = randint(8,32)
            password = ''.join(random.choice(chset) for x in range(ran1))
    
            ran2 = randint(20, 256)
            plaintext = ''.join(random.choice(chset) for x in range(ran2))
    
            ciphertext = encrypt(password, plaintext, msgdgst=args.msgdgst)
            verification = decrypt(password, ciphertext, msgdgst=args.msgdgst)
    
            if plaintext != verification:
                failed.append( [password, plaintext] )
            else:
                passed += 1
    
            output = '%*d of %d %6.2f%% %3d %3d %*d %*d %s' % (maxlen,i+1,
                                                               num,
                                                               100*(i+1)/num,
                                                               len(password),
                                                               len(plaintext),
                                                               maxlen, passed,
                                                               maxlen, len(failed),
                                                               args.msgdgst)
            if args.output is None:
                ofp.write(''*80)
                ofp.write(output)
                ofp.flush()
            else:
                ofp.write(output+'
    ')
    
        ofp.write('
    ')
    
        if len(failed):
            for i in range(len(failed)):
                ofp.write('%3d %2d %-34s %3d %s
    ' % (i,
                                                      len(failed[i][0]),
                                                      '"'+failed[i][0]+'"',
                                                      len(failed[i][1]),
                                                      '"'+failed[i][1]+'"'))
            ofp.write('
    ')
    
        if args.output is not None:
            ofp.close()
    
    
    # ================================================================
    # _cli_opts
    # ================================================================
    def _cli_opts():
        '''
        Parse command line options.
        @returns the arguments
        '''
        mepath = os.path.abspath(sys.argv[0]).encode('utf-8')
        mebase = os.path.basename(mepath)
    
        description = '''
            Implements encryption/decryption that is compatible with openssl
            AES-256 CBC mode.
    
            You can use it as follows:
    
                EXAMPLE 1: {0} -> {0} (MD5)
                    $ # Encrypt and decrypt using {0}.
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        {0} -e -p secret | \
                        {0} -d -p secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 2: {0} -> openssl (MD5)
                    $ # Encrypt using {0} and decrypt using openssl.
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        {0} -e -p secret | \
                        openssl enc -d -aes-256-cbc -md md5 -base64 -salt -pass pass:secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 3: openssl -> {0} (MD5)
                    $ # Encrypt using openssl and decrypt using {0}
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        openssl enc -e -aes-256-cbc -md md5 -base64 -salt -pass pass:secret
                        {0} -d -p secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 4: openssl -> openssl (MD5)
                    $ # Encrypt and decrypt using openssl
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        openssl enc -e -aes-256-cbc -md md5 -base64 -salt -pass pass:secret
                        openssl enc -d -aes-256-cbc -md md5 -base64 -salt -pass pass:secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 5: {0} -> {0} (SHA512)
                    $ # Encrypt and decrypt using {0}.
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        {0} -e -m sha512 -p secret | \
                        {0} -d -m sha512 -p secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 6: {0} -> openssl (SHA512)
                    $ # Encrypt using {0} and decrypt using openssl.
                    $ echo 'Lorem ipsum dolor sit amet' | \
                        {0} -e -m sha512 -p secret | \
                        openssl enc -d -aes-256-cbc -md sha1=512 -base64 -salt -pass pass:secret
                    Lorem ipsum dolor sit amet
    
                EXAMPLE 7:
                    $ # Run internal tests.
                    $ {0} -t 2000
                    2000 of 2000 100.00%%  21 104 2000    0 md5
                    $ #     ^    ^        ^  ^   ^       ^ ^
                    $ #     |    |        |  |   |       | +- message digest
                    $ #     |    |        |  |   |       +--- num failed
                    $ #     |    |        |  |   +----------- num passed
                    $ #     |    |        |  +--------------- size of text for a test
                    $ #     |    |        +------------------ size of passphrase for a test
                    $ #     |    +--------------------------- percent completed
                    $ #     +-------------------------------- total
                    # #+------------------------------------- current test
    '''.format(mebase.decode('ascii', 'ignore'))
    
        parser = argparse.ArgumentParser(prog=mebase,
                                         formatter_class=argparse.RawDescriptionHelpFormatter,
                                         description=description,
                                         )
    
        group = parser.add_mutually_exclusive_group(required=True)
        group.add_argument('-d', '--decrypt',
                           action='store_true',
                           help='decryption mode')
        group.add_argument('-e', '--encrypt',
                           action='store_true',
                           help='encryption mode')
        parser.add_argument('-i', '--input',
                            action='store',
                            help='input file, default is stdin')
        parser.add_argument('-m', '--msgdgst',
                            action='store',
                            default='md5',
                            help='message digest (md5, sha, sha1, sha256, sha512), default is md5')
        parser.add_argument('-o', '--output',
                            action='store',
                            help='output file, default is stdout')
        parser.add_argument('-p', '--passphrase',
                            action='store',
                            help='passphrase for encrypt/decrypt operations')
        group.add_argument('-t', '--test',
                           action='store',
                           default=-1,
                           type=int,
                           help='test mode (TEST is an integer)')
        parser.add_argument('-v', '--verbose',
                            action='count',
                            help='the level of verbosity')
        parser.add_argument('-V', '--version',
                            action='version',
                            version='%(prog)s '+VERSION)
    
        args = parser.parse_args()
        return args
    
    
    # ================================================================
    # main
    # ================================================================
    def main():
        args = _cli_opts()
        if args.test > 0:
            if args.input is not None:
                print('WARNING: input argument will be ignored.')
            if args.passphrase is not None:
                print('WARNING: passphrase argument will be ignored.')
            _runtest(args)
        elif args.encrypt:
            _runenc(args)
        elif args.decrypt:
            _rundec(args)
    
    
    # ================================================================
    # MAIN
    # ================================================================
    if __name__ == "__main__":
        main()
    View Code
  • 相关阅读:
    singleton模式 在软件开发中的运用
    State Pattern
    闲话闲说——关于异常
    程序人生
    Event
    SerialPort实现modem的来电显示
    利用枚举进行状态的设计
    职责链模式的运用
    我对当前项目的一些看法
    SHAREPOINT 2007 网站模板(解决方案)安装和卸载
  • 原文地址:https://www.cnblogs.com/renfanzi/p/7358578.html
Copyright © 2011-2022 走看看