zoukankan      html  css  js  c++  java
  • 货物运输 51Nod

    公元2222年,l国发生了一场战争。

    小Y负责领导工人运输物资。
    其中有m种物资的运输方案,每种运输方案形如li,ri。表示存在一种货物从li运到ri。
    这里有n个城市,第i个城市与第i+1个城市相连(这里1号城市和n号城市并不相连),并且从i号城市走到i+1号或者从i+1号走到i号需要耗费1点时间。
    由于高科技的存在,小Y想到了一种节省时间的好方案。在X号城市与Y号城市之间设立传送站,只要这么做,在X号城市走到Y号城市不需要耗费时间,同样的,从Y号城市走到X号城市也不需要耗费时间。
    但是为了防止混乱,只能设立这么一条传送站。
    现在这些运输方案同时进行,小Y想让最后到达目的地的运输方案时间最短。

    在样例中,存在两条运输方案,分别是1号城市到3号与2号到4号,那么我们在2号城市与3号城市建立传送站,这样运输方案时间最长的只需要1点时间就可以了。
     
    Input第一行两个整数n,m(1<=n,m<=500000)。
    接下来m行,每行两个整数li,ri(1<=li,ri<=n)。(若li=ri,则不需要耗费任何时间)Output一个数表示答案。Sample Input
    5 2
    1 3
    2 4
    Sample Output
    1

    题解:
      这个题目是不是和noip2015day2T3很像,于是我就打了一个差分+二分,wa了,怎么回事呢?因为他们不一定是区间的交,还有可能隧道不在区间的交中。
      所以这个题目就特别难想了,当然如果我们还是二分一个答案mid很轻易的就可以列出不等式abs(stari-x)+abs(endi-y)<=mid,stari为i号点的起点,endi为终点,x为隧道起点,y为隧道终点,那么显然对于满足所以1~i合法的(x,y)整数点对的坐标就是这个题目的答案。
      当然我们不需要用计算几何的知识,我们只需要讲这个不等式拆开,判短不等式是否成立就可以了。
      这个题目还是比较神的,可以多思考一下,不要先看题解。

    代码:
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #define MAXN 500100
    #define inf 1<<30
    using namespace std;
    int n,m;
    int l[MAXN],r[MAXN];
    
    bool check(int mid){
        int d1=-inf,d2=1<<30,c1=-inf,c2=1<<30;
        for(int i=1;i<=n;i++){
            if(r[i]-l[i]<=mid) continue;
            d1=max(d1,l[i]+r[i]-mid);
            d2=min(d2,l[i]+r[i]+mid);
            c1=max(l[i]-r[i]-mid,c1);
            c2=min(l[i]-r[i]+mid,c2);
            if(d1>d2) return 0;
            if(c1>c2) return 0;
        }
        return 1;
    }
    
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++) scanf("%d%d",&l[i],&r[i]);
        for(int i=1;i<=m;i++){
            if(l[i]>r[i]) swap(l[i],r[i]);
        }
        int l=0,r=n,mid,ans=-1;
        while(l<=r){
            mid=(l+r)/2;
            if(check(mid)) ans=mid,r=mid-1;
            else l=mid+1;
        }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    Mahout 安装配置
    基于 Apache Mahout 构建社会化推荐引擎
    探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法
    基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms”
    java书籍推荐:《Java SE 6 技術手册》
    数据库(具体步骤)
    八皇后问题java实现
    最长递增子序列
    C语言中的union使用方法
    chmod和chown命令具体使用方法
  • 原文地址:https://www.cnblogs.com/renjianshige/p/7524388.html
Copyright © 2011-2022 走看看