zoukankan      html  css  js  c++  java
  • LN : leetcode 494 Target Sum

    lc 494 Target Sum


    494 Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

    Find out how many ways to assign symbols to make sum of integers equal to target S.

    Example 1:

    Input: nums is [1, 1, 1, 1, 1], S is 3. 
    Output: 5
    Explanation: 
    
    -1+1+1+1+1 = 3
    +1-1+1+1+1 = 3
    +1+1-1+1+1 = 3
    +1+1+1-1+1 = 3
    +1+1+1+1-1 = 3
    
    There are 5 ways to assign symbols to make the sum of nums be target 3.
    

    Note:

    1. The length of the given array is positive and will not exceed 20.
    2. The sum of elements in the given array will not exceed 1000.
    3. Your output answer is guaranteed to be fitted in a 32-bit integer.

    DP Accepted

    数组的数字要么取正要么取负,sum(P)代表所有取正的数的和,sum(N)代表所有取负的数的和。

                    sum(P) - sum(N) = target
    sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
                    2 * sum(P) = target + sum(nums)
    

    可以看出:如果target + sum(nums)为奇数,那必定可行方法数为0。之后利用 416 Partition Equal Subset Sum中的方法,即可求得数组中求和得到(target + sum(nums))/2的方法数。

    class Solution {
    public:
        int findTargetSumWays(vector<int>& nums, int S) {
            int sum = accumulate(nums.begin(), nums.end(), 0);
            if (sum < S) return 0;
            else return (S+sum) & 1 ? 0 : subsum(nums, (S+sum)>>1);
        }
        
        int subsum(vector<int>& nums, int S) {
            vector<int> dp(S+1, 0);
            dp[0] = 1;
            for (int n : nums)
                for (int i = S; i >= n; i--)
                    dp[i] += dp[i-n];
            return dp[S];
        }
    };
    
  • 相关阅读:
    随机抽样一致性算法(RANSAC)
    RANSAC算法详解
    添加“返回顶部”小图标按钮的JS(JavaScript)代码详解
    vue-cli3组件嵌套
    vue-cli3文件的引入
    vue-cli3组件的使用
    vue ui 使用图形化界面
    vue-cli3及以上版本安装及创建项目
    NetTerm共享文件
    Gin框架配置静态文件static
  • 原文地址:https://www.cnblogs.com/renleimlj/p/8025194.html
Copyright © 2011-2022 走看看