zoukankan      html  css  js  c++  java
  • 机器学习15卷积神经网络处理手写数字图片

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    from sklearn.datasets import load_digits
    digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    # 2、图片预处理
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.model_selection import train_test_split
    #将x转化为浮点用于归一化
    x = digits.data.astype(np.float32)
    # 将Y_data变为一列用于onehot
    y= digits.target.astype(np.float32).reshape(-1, 1)
    
    # 将属性缩放到一个指定的最大和最小值(通常是1-0之间)
    # x:归一化MinMaxScaler()
    scaler = MinMaxScaler()
    x = scaler.fit_transform(x)
    print("归一化处理后的x:")
    print(x)
    
    # y:独热编码OneHotEncoder 张量结构todense
    # 进行oe-hot编码
    y = OneHotEncoder().fit_transform(y).todense()
    print("one hot处理后的期望值:")
    print(y)
    
    #转换为图片的格式(batch, height, width, channels)
    x = x.reshape(-1, 8, 8, 1)
    
    # 训练集测试集划分
    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0, stratify=y)
    print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。

    依据经典模型,在根据图片维数8乘8,选择4层卷积,3层池化。 为防止过拟合在其中加入Dropout层

    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import MaxPool2D, Dropout, Flatten, Dense
    model = Sequential()
    ks = (3, 3)
    # x
    input_shape = x.shape[1:]
    # 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # 池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))
    # 防止过拟合,随机丢掉连接
    model.add(Dropout(0.25))
    # 二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # 池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # 四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # 池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 平坦层
    model.add(Flatten())
    # 全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    # 激活函数softmax
    model.add(Dense(10, activation='softmax'))
    print(model.summary())

     

    4.模型训练

    # 训练模型
    # 损失函数:categorical_crossentropy,优化器:adam ,用准确率accuracy衡量模型
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    # 划分20%作为验证数据,每次训练300个数据,训练迭代150轮
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=150, verbose=2)

     

    import matplotlib.pyplot as plt
    #自定义绘制函数
    def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()

    show_train_history(train_history, 'accuracy', 'val_accuracy',"准确值")

    show_train_history(train_history, 'loss', 'val_loss',"损失值")

     

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    from boto import sns
    import pandas as pd
    # 5、模型评价
    # model.evaluate()
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    # pandas.crosstab
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    # 交叉矩阵
    # seaborn.heatmap
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    # 转换成属dataframe
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
    plt.show()

  • 相关阅读:
    leetcode bugfree note
    leetcode 419
    leetcode 165
    leetcode 155
    leetcode 204
    leetcode 28
    将二叉搜索树转为有序双向链表
    leetcode 397
    ABAP 动态内表创建/赋值
    ABAP 屏幕下拉框值根据选择框填值赋值
  • 原文地址:https://www.cnblogs.com/renshenbenzuig/p/13087968.html
Copyright © 2011-2022 走看看