Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the conditionnums[i] + nums[j] + nums[k] < target
.
For example, given nums = [-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
这道题的解法与所有的3 sum,4 sum一样。唯一的区别在于两边往中间找的时候,如果小于dif,那么中间所有的都满足小于的情况,比如[3,1,0,-2], 4。 Sort完是[-2,0,1,3], 一开始选-2时,dif为6,left为1,right为3,小于dif,则以right为一个,left从左一直到right-1的组合都是满足要求的。
public int ThreeSumSmaller(int[] nums, int target) { Array.Sort(nums); var res =0; int size = nums.Count(); for(int i =0;i< size;i++) { int num = nums[i]; int dif = target - num; int left =i+1; int right = size -1; while(left<right) { if(nums[left]+nums[right] < dif) { res+=right-left; left++; } else right--; } } return res; }