zoukankan      html  css  js  c++  java
  • GMM的EM算法实现

    转自:http://blog.csdn.net/abcjennifer/article/details/8198352

     

     聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。

     

    1. GMM模型:

     

    每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:


    根据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上可以分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就可以了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

    那么如何用 GMM 来做 clustering 呢?其实很简单,现在我们有了数据,假定它们是由 GMM 生成出来的,那么我们只要根据数据推出 GMM 的概率分布来就可以了,然后 GMM 的 K 个 Component 实际上就对应了 K 个 cluster 了。根据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要估计其中的参数的过程被称作“参数估计”。

     

    2. 参数与似然函数:

    现在假设我们有 N 个数据点,并假设它们服从某个分布(记作 p(x) ),现在要确定里面的一些参数的值,例如,在 GMM 中,我们就需要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些参数。 我们的想法是,找到这样一组参数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于  ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都很小,许多很小的数字相乘起来在计算机里很容易造成浮点数下溢,因此我们通常会对其取对数,把乘积变成加和 sum_{i=1}^N log p(x_i),得到 log-likelihood function 。接下来我们只要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组参数值,它让似然函数取得最大值,我们就认为这是最合适的参数,这样就完成了参数估计的过程。

    下面让我们来看一看 GMM 的 log-likelihood function :


     

    由于在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决这个问题,我们采取之前从 GMM 中随机选点的办法:分成两步,实际上也就类似于K-means 的两步。

     

     

    3. 算法流程:

    1.  估计数据由每个 Component 生成的概率(并不是每个 Component 被选中的概率):对于每个数据 x_i 来说,它由第 k 个 Component 生成的概率为

     

    其中N(xi | μk,Σk)就是后验概率

     

    2. 通过极大似然估计可以通过求到令参数=0得到参数pMiu,pSigma的值。具体请见这篇文章第三部分。


    其中 N_k = sum_{i=1}^N gamma(i, k) ,并且 pi_k 也顺理成章地可以估计为 N_k/N 。

     

    3. 重复迭代前面两步,直到似然函数的值收敛为止。

     

     

    4. matlab实现GMM聚类代码与解释:

     

    说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的判断accuracy方面,由于聚类和分类不同,只是得到一些 cluster ,而并不知道这些 cluster 应该被打上什么标签,或者说。由于我们的目的是衡量聚类算法的 performance ,因此直接假定这一步能实现最优的对应关系,将每个 cluster 对应到一类上去。一种办法是枚举所有可能的情况并选出最优解,另外,对于这样的问题,我们还可以用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在下面函数中了。

     

    注意:资源里我放的是Kmeans的代码,大家下载的时候只要用bestMap.m等几个文件就好~

     

     

    1. gmm.m,最核心的函数,进行模型与参数确定。

     

    1. function varargout = gmm(X, K_or_centroids)  
    2. % ============================================================  
    3. % Expectation-Maximization iteration implementation of  
    4. % Gaussian Mixture Model.  
    5. %  
    6. % PX = GMM(X, K_OR_CENTROIDS)  
    7. % [PX MODEL] = GMM(X, K_OR_CENTROIDS)  
    8. %  
    9. %  - X: N-by-D data matrix.  
    10. %  - K_OR_CENTROIDS: either K indicating the number of  
    11. %       components or a K-by-D matrix indicating the  
    12. %       choosing of the initial K centroids.  
    13. %  
    14. %  - PX: N-by-K matrix indicating the probability of each  
    15. %       component generating each point.  
    16. %  - MODEL: a structure containing the parameters for a GMM:  
    17. %       MODEL.Miu: a K-by-D matrix.  
    18. %       MODEL.Sigma: a D-by-D-by-K matrix.  
    19. %       MODEL.Pi: a 1-by-K vector.  
    20. % ============================================================  
    21. % @SourceCode Author: Pluskid (http://blog.pluskid.org)  
    22. % @Appended by : Sophia_qing (http://blog.csdn.net/abcjennifer)  
    23.       
    24.   
    25. %% Generate Initial Centroids  
    26.     threshold = 1e-15;  
    27.     [N, D] = size(X);  
    28.    
    29.     if isscalar(K_or_centroids) %if K_or_centroid is a 1*1 number  
    30.         K = K_or_centroids;  
    31.         Rn_index = randperm(N); %random index N samples  
    32.         centroids = X(Rn_index(1:K), :); %generate K random centroid  
    33.     else % K_or_centroid is a initial K centroid  
    34.         K = size(K_or_centroids, 1);   
    35.         centroids = K_or_centroids;  
    36.     end  
    37.    
    38.     %% initial values  
    39.     [pMiu pPi pSigma] = init_params();  
    40.    
    41.     Lprev = -inf; %上一次聚类的误差  
    42.       
    43.     %% EM Algorithm  
    44.     while true  
    45.         %% Estimation Step  
    46.         Px = calc_prob();  
    47.    
    48.         % new value for pGamma(N*k), pGamma(i,k) = Xi由第k个Gaussian生成的概率  
    49.         % 或者说xi中有pGamma(i,k)是由第k个Gaussian生成的  
    50.         pGamma = Px .* repmat(pPi, N, 1); %分子 = pi(k) * N(xi | pMiu(k), pSigma(k))  
    51.         pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K); %分母 = pi(j) * N(xi | pMiu(j), pSigma(j))对所有j求和  
    52.    
    53.         %% Maximization Step - through Maximize likelihood Estimation  
    54.           
    55.         Nk = sum(pGamma, 1); %Nk(1*k) = 第k个高斯生成每个样本的概率的和,所有Nk的总和为N。  
    56.           
    57.         % update pMiu  
    58.         pMiu = diag(1./Nk) * pGamma' * X; %update pMiu through MLE(通过令导数 = 0得到)  
    59.         pPi = Nk/N;  
    60.           
    61.         % update k个 pSigma  
    62.         for kk = 1:K   
    63.             Xshift = X-repmat(pMiu(kk, :), N, 1);  
    64.             pSigma(:, :, kk) = (Xshift' * ...  
    65.                 (diag(pGamma(:, kk)) * Xshift)) / Nk(kk);  
    66.         end  
    67.    
    68.         % check for convergence  
    69.         L = sum(log(Px*pPi'));  
    70.         if L-Lprev < threshold  
    71.             break;  
    72.         end  
    73.         Lprev = L;  
    74.     end  
    75.    
    76.     if nargout == 1  
    77.         varargout = {Px};  
    78.     else  
    79.         model = [];  
    80.         model.Miu = pMiu;  
    81.         model.Sigma = pSigma;  
    82.         model.Pi = pPi;  
    83.         varargout = {Px, model};  
    84.     end  
    85.    
    86.     %% Function Definition  
    87.       
    88.     function [pMiu pPi pSigma] = init_params()  
    89.         pMiu = centroids; %k*D, 即k类的中心点  
    90.         pPi = zeros(1, K); %k类GMM所占权重(influence factor)  
    91.         pSigma = zeros(D, D, K); %k类GMM的协方差矩阵,每个是D*D的  
    92.    
    93.         % 距离矩阵,计算N*K的矩阵(x-pMiu)^2 = x^2+pMiu^2-2*x*Miu  
    94.         distmat = repmat(sum(X.*X, 2), 1, K) + ... %x^2, N*1的矩阵replicateK列  
    95.             repmat(sum(pMiu.*pMiu, 2)', N, 1) - ...%pMiu^2,1*K的矩阵replicateN行  
    96.             2*X*pMiu';  
    97.         [~, labels] = min(distmat, [], 2);%Return the minimum from each row  
    98.    
    99.         for k=1:K  
    100.             Xk = X(labels == k, :);  
    101.             pPi(k) = size(Xk, 1)/N;  
    102.             pSigma(:, :, k) = cov(Xk);  
    103.         end  
    104.     end  
    105.    
    106.     function Px = calc_prob()   
    107.         %Gaussian posterior probability   
    108.         %N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)'pSigma^(-1)*(x-pMiu))  
    109.         Px = zeros(N, K);  
    110.         for k = 1:K  
    111.             Xshift = X-repmat(pMiu(k, :), N, 1); %X-pMiu  
    112.             inv_pSigma = inv(pSigma(:, :, k));  
    113.             tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);  
    114.             coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));  
    115.             Px(:, k) = coef * exp(-0.5*tmp);  
    116.         end  
    117.     end  
    118. end  

     

     

    2. gmm_accuracy.m调用gmm.m,计算准确率:

     

    [cpp] view plaincopy
     
    1. function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )  
    2. %Calculate the accuracy Clustered by GMM model  
    3.   
    4. px = gmm(Data_fea,K);  
    5. [~, cls_ind] = max(px,[],1); %cls_ind = cluster label   
    6. Accuracy = cal_accuracy(cls_ind, gnd_label);  
    7.   
    8.     function [acc] = cal_accuracy(gnd,estimate_label)  
    9.         res = bestMap(gnd,estimate_label);  
    10.         acc = length(find(gnd == res))/length(gnd);  
    11.     end  
    12.   
    13. end 



     

    3. 主函数调用

    gmm_acc = gmm_accuracy(fea,gnd,N_classes); 

     

     

     

     

    写了本文进行总结后自己很受益,也希望大家可以好好YM下上面pluskid的gmm.m,不光是算法,其中的矩阵处理代码也写的很简洁,很值得学习。

    另外看了两份东西非常受益,一个是pluskid大牛的漫谈 Clustering (3): Gaussian Mixture Model》,一个是JerryLead的EM算法详解,大家有兴趣也可以看一下,写的很好

  • 相关阅读:
    centos7时间不同步,ntpd时间同步服务
    centos7.6离线安装docker
    安装虚拟机总是获取不到IP地址的解决办法
    安装英伟显卡,出现报错总结
    在ubuntu 安装make
    if,while,for脚本小练习
    python输入密码-隐藏
    Python修改headers参数的两种方法
    Python爬虫 —POST请求有道翻译{"errorcode":50}
    列表转换为字典
  • 原文地址:https://www.cnblogs.com/retrieval/p/3735293.html
Copyright © 2011-2022 走看看