暴力枚举,然后(hash)表判断
复杂度(O(26 * 20 * n))
具体而言
对于操作1:暴力枚举删除
对于操作2:暴力添加,注意添加不要重复
对于操作3:暴力替换,同样的注意不要重复
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define ull unsigned long long
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
const int yume = 19260817;
const int sid = 4300050;
char s[50];
int n, m, L, cnp;
ull num, pre[50], wei[50];
int cap[sid], nxt[sid], val[sid];
ull fz[sid];
inline int get(ull v) {
int k = v & 4194303;
for(int i = cap[k]; i; i = nxt[i])
if(fz[i] == v) return i;
return 0;
}
inline void ins(ull v) {
int k = v & 4194303;
int p = get(v);
if(!p) {
nxt[++ cnp] = cap[k]; fz[cnp] = v;
cap[k] = cnp; val[cnp] = 1;
}
else val[p] ++;
}
inline ull v(int l, int r) {
if(l > r) return 0;
return pre[r] - pre[l - 1] * wei[r - l + 1];
}
inline ull calc1(int p) { return v(1, p - 1) * wei[L - p] + v(p + 1, L); }
inline ull calc2(int p, char c) { return v(1, p - 1) * wei[L - p + 1] + v(p + 1, L) + c * wei[L - p]; }
inline ull calc3(int p, char c) { return v(1, p) * wei[L - p + 1] + v(p + 1, L) + c * wei[L - p]; }
int main() {
wei[0] = 1;
rep(i, 1, 30) wei[i] = wei[i - 1] * yume;
cin >> n >> m;
rep(i, 1, n) {
scanf("%s", s + 1); L = strlen(s + 1); num = 0;
rep(j, 1, L) num = num * yume + s[j];
ins(num);
}
rep(i, 1, m) {
scanf("%s", s + 1); L = strlen(s + 1);
rep(j, 1, L) pre[j] = pre[j - 1] * yume + s[j];
if(get(pre[L])) { printf("-1
"); continue; }
int ans = 0;
rep(j, 1, L)
if(s[j] != s[j - 1])
ans += val[get(calc1(j))];
rep(j, 1, L) rep(c, 'a', 'z')
if(c != s[j])
ans += val[get(calc2(j, c))];
rep(j, 0, L) rep(c, 'a', 'z')
if(c != s[j + 1])
ans += val[get(calc3(j, c))];
printf("%d
", ans);
}
return 0;
}