给定(n)个点,(m)条边的带权无向图
选出一些边,使得(4)对点之间可达,询问权值最小为多少
(n leqslant 30, m leqslant 1000)
首先看数据范围,(4)对点,也就是(8)个点,很小
上斯坦纳树(局部最小生成树)
然而好像题目并不是斯坦纳树,可能是一些树拼到一起
那么就再做一个状压(dp)即可
复杂度(O(3^8 * n + 2^8 * nm + 2^{12} * n))
#include <map>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int sid = 55;
const int eid = (1 << 9) - 1;
inline void cmin(int &a, int b) { if(a > b) a = b; }
int n, m, nc;
int U[sid], V[sid], cl[sid], ip[sid];
int f[sid][eid], E[sid][sid];
string s[55], sa, sb;
map <string, int> id;
int inq[sid];
queue <int> q;
void spfa(int S) {
memset(inq, 0, sizeof(inq));
for(int i = 1; i <= n; i ++) q.push(i);
while(!q.empty()) {
int id = q.front(); q.pop(); inq[id] = 0;
for(int j = 1; j <= n; j ++)
if(f[j][S] > f[id][S] + E[id][j]) {
f[j][S] = f[id][S] + E[id][j];
if(!inq[j]) q.push(j), inq[j] = 1;
}
}
}
void wish1() {
memset(f, 56, sizeof(f));
for(int i = 1; i <= n; i ++)
if(cl[i]) {
nc ++;
ip[i] = nc;
f[i][(1 << nc - 1)] = 0;
}
for(int S = 0; S <= (1 << nc) - 1; S ++) {
for(int i = 1; i <= n; i ++)
for(int T = S; T; T = (T - 1) & S)
cmin(f[i][S], f[i][T] + f[i][S ^ T]);
spfa(S);
}
}
int g[eid];
void wish2() {
memset(g, 56, sizeof(g)); g[0] = 0;
for(int s = 0; s <= (1 << 4) - 1; s ++)
for(int i = 1; i <= n; i ++)
for(int S = 0; S <= (1 << nc) - 1; S ++) {
int T = 0;
for(int k = 1; k <= 4; k ++)
if((S & (1 << ip[U[k]] - 1)) && (S & (1 << ip[V[k]] - 1)))
T |= (1 << k - 1);
cmin(g[s | T], g[s] + f[i][S]);
}
printf("%d
", g[(1 << 4) - 1]);
}
int main() {
freopen("bzoj1402.in", "r", stdin);
freopen("bzoj1402.out", "w", stdout);
cin >> n >> m;
for(int i = 1; i <= n; i ++) {
cin >> s[i];
id[s[i]] = i;
}
memset(E, 56, sizeof(E));
for(int i = 1; i <= m; i ++) {
int u, v, w;
cin >> sa >> sb >> w;
u = id[sa]; v = id[sb];
cmin(E[u][v], w); E[v][u] = E[u][v];
}
for(int i = 1; i <= 4; i ++) {
int u, v;
cin >> sa >> sb;
u = id[sa]; v = id[sb];
U[i] = u; V[i] = v;
cl[u] = cl[v] = 1;
}
wish1(); wish2();
return 0;
}