zoukankan      html  css  js  c++  java
  • bzoj3456 城市规划 多项式求In

    $n$个点的无向联通图的个数


    打着好累啊

    一定要封装一个板子


    记$C(x)$为无向图个数的指数型生成函数,(C(0) = 1)

    记$G(x)$为无向联通图个数的指数型生成函数,(G(0) = 0)

    那么$G(x) = e^{C(x)}$

    从而,(C(x) = In(G(x)))

    复杂度$O(n log n)$


    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    #define ri register int
    #define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
    #define drep(io, ed, st) for(ri io = ed; io >= st; io --)
    
    const int sid = 270000;
    const int mod = 1004535809;
    
    inline int Inc(int a, int b) { return (a + b >= mod) ? a + b - mod : a + b; }
    inline int Dec(int a, int b) { return (a - b < 0) ? a - b + mod : a - b; }
    inline int mul(int a, int b) { return 1ll * a * b % mod; }
    inline int fp(int a, int k) {
    	int ret = 1;
    	for( ; k; k >>= 1, a = mul(a, a))
    		if(k & 1) ret = mul(ret, a);
    	return ret;
    }
    
    int N_, N, n, lg;
    int ans[sid], ivfac[sid], fac[sid], inv[sid], rev[sid];
    
    inline void init(int Maxn, int &rn, int &rlg, int opt = 0) {
    	rn = 1; rlg = 0;
    	while(rn < Maxn) rn <<= 1, rlg ++;
    	if(opt) rep(i, 0, rn) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (rlg - 1));
    }
    
    inline int NTT(int *a, int n, int opt) {
    	for(ri i = 0; i < n; i ++) 
    		if(i < rev[i]) swap(a[i], a[rev[i]]);
    	for(ri i = 1; i < n; i <<= 1)
    	for(ri j = 0, g = fp(3, (mod - 1) / (i << 1)); j < n; j += (i << 1))
    	for(ri k = j, G = 1; k < i + j; k ++, G = 1ll * G * g % mod) {
    		int x = a[k], y = mul(G, a[i + k]);
    		a[k] = (x + y >= mod) ? x + y - mod : x + y;
    		a[i + k] = (x - y < 0) ? x - y + mod : x - y; 
    	}
    	if(opt == -1) {
    		reverse(a + 1, a + n);
    		for(ri i = 0; i < n; i ++) a[i] = mul(a[i], inv[n]);
    	}
    }
    
    int iva[sid], ivb[sid];
    inline void get_inv(int *a, int n, int *ret) {
    	if(n == 1) { ret[0] = inv[a[0]]; return; }
    	get_inv(a, n >> 1, ret);
    	init(n + n, N, lg, 1);
    	for(ri i = 0; i < N; i ++) iva[i] = ivb[i] = 0;
    	for(ri i = 0; i < n; i ++) iva[i] = a[i], ivb[i] = ret[i];
    	NTT(iva, N, 1); NTT(ivb, N, 1);
    	for(ri i = 0; i < N; i ++) iva[i] = Dec(Inc(ivb[i], ivb[i]), mul(iva[i], mul(ivb[i], ivb[i])));
    	NTT(iva, N, -1);
    	for(ri i = 0; i < n; i ++) ret[i] = iva[i];
    }
    
    inline void wf(int *a, int n, int *ret) { for(ri i = 1; i < n; i ++) ret[i - 1] = mul(a[i], i); }
    inline void jf(int *a, int n, int *ret) { for(ri i = 1; i < n; i ++) ret[i] = mul(a[i - 1], inv[i]); }
    
    int ivf[sid], df[sid];
    inline void get_ln(int *a, int n, int *ret) {
    	int N = 1, lg = 0;
    	init(n + n, N, lg);
    	wf(a, n, df); get_inv(a, n, ivf);
    	init(n + n, N, lg, 1);
    	NTT(df, N, 1); NTT(ivf, N, 1);
    	for(ri i = 0; i < N; i ++) df[i] = mul(df[i], ivf[i]);
    	NTT(df, N, -1); jf(df, n, ret);
    }
    
    int C2[sid], f[sid];
    int main() {
    	freopen("3456.in", "r", stdin);
    	freopen("3456.out", "w", stdout);
    	cin >> n;
    	init(n + 5, N_, lg);
    	
    	N_ <<= 1;
    	inv[0] = inv[1] = 1;
    	fac[0] = fac[1] = 1;
    	ivfac[0] = ivfac[1] = 1;
    	rep(i, 2, N_) {
    		fac[i] = mul(fac[i - 1], i);
    		inv[i] = mul(inv[mod % i], mod - mod / i);
    	}
    	rep(i, 2, N_) ivfac[i] = mul(inv[i], ivfac[i - 1]);
    	rep(i, 0, N_) C2[i] = 1ll * i * (i - 1) / 2 % (mod - 1);
    	rep(i, 0, N_) f[i] = mul(fp(2, C2[i]), ivfac[i]); 
    	N_ >>= 1;
    	
    	get_ln(f, N_, ans);
    	printf("%d
    ", mul(ans[n], fac[n]));
    	return 0;
    }
    
  • 相关阅读:
    腾讯云短信接口完成验证码功能
    git使用的简要介绍
    drf分页组件补充
    drf中的jwt使用与手动签发效验
    django的认证演变过程分析
    drf三大认证补充
    drf三大认证
    IO事件
    配置Java环境变量
    各种O
  • 原文地址:https://www.cnblogs.com/reverymoon/p/10174924.html
Copyright © 2011-2022 走看看