zoukankan      html  css  js  c++  java
  • luoguP3920 [WC2014]紫荆花之恋 动态点分治 + 替罪羊树


    意外的好写.....


    考虑点分

    (dis(i, j) leq r_i + r_j)

    对于过分治中心一点(u),有

    (dis(i, u) - r_i = dis(j, u) + r_j)

    对于同一子树内需要去重

    原本是考虑用值域线段树来维护的,看了看(10^9)的范围,空间估计开不下

    那就用平衡树吧...


    用动态点分来维护答案,每次默认把(i)归到父亲的分治结构中

    如果某个分治结构过于不平衡,那么就暴力重构

    注意一下,一个点分治中的分治结构在树中对应一个联通块,没有任何其他的性质...

    (我用(n log n)的时间直接暴力维护了,感觉应该有更好的办法)

    和二叉树的分析差不多,复杂度是(O(n log^2 n))的吧...


    一开始受到了打树静态的动态点分治的影响

    对于分治中心(u),直接把每个子树的信息存在了和(u)有对应连边的点上...

    事实上,应该存在对应子树的重心上,重构的时候才不会出错...


    #include <map>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    #define ll long long
    #define ri register int
    #define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
    #define drep(io, ed, st) for(ri io = ed; io >= st; io --)
    
    #define gc getchar
    inline int read() {
    	int p = 0, w = 1; char c = gc();
    	while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
    	while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
    	return p * w;
    }
    	
    const int sid = 3e5 + 5;
    const int cid = 5e6 + 5;
    	
    struct stO_Mxl_Orz {
    	
    	int trash[cid], id, top;
    	
    	struct Yume_Alive_Forever {
    		int sz, pri, num, son[2];
    		ll val;
    	} t[cid];
    	
    	inline int rand() {
    		static int seed = 23333333;
    		return seed = (seed * 97103LL) % 2147483647;
    	}
    	
    	#define ls(o) t[(o)].son[0]
    	#define rs(o) t[(o)].son[1]
    	
    	inline int newnode(ll v) {
    		int ip = top ? trash[top --] : ++ id;
    		ls(ip) = rs(ip) = 0; t[ip].sz = t[ip].num = 1;
    		t[ip].val = v; t[ip].pri = rand();
    		return ip;
    	}
    	
    	inline void upd(int o) {
    		t[o].sz = t[ls(o)].sz + t[rs(o)].sz + t[o].num;
    	}
    	
    	inline void recycle(int &o) {
    		if(!o) return;		
    		recycle(ls(o)); recycle(rs(o));
    		trash[++ top] = o;
    	}
    	
    	inline void rotate(int &o, int p) {
    		int u = t[o].son[p];
    		t[o].son[p] = t[u].son[!p]; t[u].son[!p] = o;
    		upd(o); upd(u); o = u;
    	}
    	
    	inline void insert(int &o, ll v) {
    		if(!o) { o = newnode(v); return; }
    		t[o].sz ++;
    		if(v == t[o].val) { t[o].num ++; return; }
    		int nxt = v > t[o].val;
    		insert(t[o].son[nxt], v);
    		if(t[o].pri > t[t[o].son[nxt]].pri) rotate(o, nxt);
    	}
    	
    	inline int qry(int o, ll v) {
    		if(!o) return 0;
    		if(v == t[o].val) return t[ls(o)].sz + t[o].num;
    		if(v < t[o].val) return qry(ls(o), v);
    		else return t[ls(o)].sz + t[o].num + qry(rs(o), v);
    	}
    	
    } myk;
    
    bool debug;
    
    ll dit[sid];
    int dep[sid], up[sid][17];
    inline int lca(int u, int v) {
    	if(dep[u] < dep[v]) swap(u, v);
    	int d = dep[u] - dep[v];
    	drep(i, 16, 0) if(d & (1 << i)) u = up[u][i];
    	if(u == v) return u;
    	drep(i, 16, 0) 
    		if(up[u][i] != up[v][i]) u = up[u][i], v = up[v][i];
    	if(u == v) return u;
    	return up[u][0];
    }
    
    inline ll dis(int u, int v) {
    	return dit[u] + dit[v] - (dit[lca(u, v)] << 1);
    }
    
    ll ans;
    int r[sid], fa[sid];
    int msx[sid], fd[sid], rt[sid], lrt[sid];
    
    int asz, cnp, tim, hrt, ban;
    int son[sid], sz[sid], ok[sid], vis[sid];
    int cap[sid], nxt[sid], node[sid], len[sid]; 
    
    inline void addedge(int u, int v, int w) {
    	nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v; len[cnp] = w;
    	nxt[++ cnp] = cap[v]; cap[v] = cnp; node[cnp] = u; len[cnp] = w;
    }
    
    #define cur node[i]
    inline void grt(int o, int fa) {
    	son[o] = 0; sz[o] = 1;
    	for(int i = cap[o]; i; i = nxt[i])
    	if(ok[cur] == tim && vis[cur] != tim  && cur != fa) {
    		grt(cur, o); sz[o] += sz[cur];
    		if(sz[cur] > son[o]) son[o] = sz[cur];
    	}
    	son[o] = max(son[o], asz - son[o]);
    	if(son[o] < son[hrt]) hrt = o;
    }
    
    inline void dfs(int o, int fa) {
    	sz[o] = 1;
    	for(int i = cap[o]; i; i = nxt[i])
    		if(ok[cur] == tim && vis[cur] != tim && cur != fa)
    			dfs(cur, o), sz[o] += sz[cur];
    }
    
    vector <int> as[sid];
    inline void dfs(int o, int fa, int anc1, int anc2, ll lev) {
    	as[anc2].push_back(o);
    	myk.insert(rt[anc2], lev - r[o]);
    	myk.insert(lrt[anc1], lev - r[o]);
    	for(int i = cap[o]; i; i = nxt[i])
    		if(ok[cur] == tim && vis[cur] != tim && cur != fa)
    			dfs(cur, o, anc1, anc2, lev + len[i]);
    }
    
    inline void solve(int o) {
    	vis[o] = tim;
    	as[o].push_back(o);
    	myk.insert(rt[o], - r[o]);
    	for(int i = cap[o]; i; i = nxt[i]) 
    	if(ok[cur] == tim && vis[cur] != tim && cur != ban) dfs(cur, o);
    	msx[o] = 0;
    	for(int i = cap[o]; i; i = nxt[i]) 
    	if(ok[cur] == tim && vis[cur] != tim) {
    		msx[o] = max(msx[o], sz[cur]);
    		asz = sz[cur]; hrt = 0; 
    		grt(cur, o); fd[hrt] = o; 
    		dfs(cur, o, hrt, o, len[i]);
    		solve(hrt);
    	}
    }
    
    inline void dfs(int o, int fa, int anc) {
    	as[o].clear();
    	myk.recycle(rt[o]); rt[o] = 0; 
    	myk.recycle(lrt[o]); lrt[o] = 0;
    	if(ban) myk.insert(lrt[anc], dis(o, ban) - r[o]);
    	for(int i = cap[o]; i; i = nxt[i])
    		if(ok[cur] == tim && cur != ban && cur != fa) 
    			dfs(cur, o, anc);
    }
    
    inline void rebuild(int o) {
    	++ tim; ban = fd[o]; 
    	asz = myk.t[rt[o]].sz; hrt = 0;
    	for(auto x : as[o]) ok[x] = tim; 
    	grt(o, ban); 
    	dfs(hrt, ban, hrt);
    	fd[hrt] = ban;
    	solve(hrt); 
    }
    
    inline void modify(int o) {
    	fd[o] = fa[o];
    	for(ri now = fd[o], lst = o; now; lst = now, now = fd[now]) {	
    		ll v = dis(now, o);
    		as[now].push_back(o);
    		myk.insert(rt[now], v - r[o]);
    		myk.insert(lrt[lst], v - r[o]);
    		ans += myk.qry(rt[now], r[o] - v) - myk.qry(lrt[lst], r[o] - v);
    		msx[now] = max(msx[now], myk.t[lrt[lst]].sz);
    	}
    	
    	const double Yume_Saiko = 0.756412;
    		
    	int tmp = -1;
    	for(ri now = fd[o]; now; now = fd[now])
    		if(msx[now] >= myk.t[rt[now]].sz * Yume_Saiko) tmp = now;
    	if(tmp != -1) rebuild(tmp);
    }
    
    const int mod = 1e9;
    int main() {
    	int Wahaha = read();
    	int n = read(); son[0] = n + 1;
    	for(ri i = 1; i <= n; i ++) {
    		fa[i] = read() ^ (ans % mod);
    		int c = read(); r[i] = read();
    		
    		addedge(fa[i], i, c);
    		up[i][0] = fa[i];
    		dep[i] = dep[fa[i]] + 1;
    		dit[i] = dit[fa[i]] + c;
    		for(ri j = 1; j <= 16; j ++)
    			up[i][j] = up[up[i][j - 1]][j - 1];
    		 
    		as[i].push_back(i);
    		myk.insert(rt[i], -r[i]);
    		if(i != 1) modify(i);
    		printf("%lld
    ", ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    windows的一组常用运行命令
    nfs:server is not responding,still trying 原因与解决方案
    MYSQL外键(Foreign Key)的使用
    byte[]转字符串编码问题
    /usr/bin/ld: cannot find lGL
    Linux查看用户及分组
    NAND和NOR flash的区别
    Win7+Ubuntu11.10(EasyBCD硬盘安装)
    Win7+Ubuntu12.04.1硬盘安装错误及解决方案
    Linux内核编译时错误
  • 原文地址:https://www.cnblogs.com/reverymoon/p/10216291.html
Copyright © 2011-2022 走看看