Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
采用1维DP来做,以n为分类标准,建造数组,作为存储空间。
注意,对于任意的输入m,m == for all inv in m, number of trees for m += matrix[inv -1] * matrix[m - inv]; [1 , m )
1 public class Solution { 2 public int numTrees(int n) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 //[....) 6 if(n < 1) return 0; 7 else{ 8 int[] matrix = new int[n + 1]; 9 matrix[0] = 1; 10 matrix[1] = 1; 11 for(int inv = 2; inv < n + 1; inv ++){ 12 int sum = 0; 13 for(int m = 1; m < inv + 1; m ++){ 14 sum += matrix[m -1] * matrix[inv - m]; 15 } 16 matrix[inv] = sum; 17 } 18 return matrix[n]; 19 } 20 } 21 }
第二遍:
1 public class Solution { 2 public int numTrees(int n) { 3 // IMPORTANT: Please reset any member data you declared, as 4 // the same Solution instance will be reused for each test case. 5 if(n <= 0) return 0; 6 int[] map = new int[n + 1]; 7 map[0] = 1; 8 map[1] = 1; 9 for(int i = 2; i <= n; i ++) 10 for(int j = 1; j <= i; j ++)//root integer 11 map[i] += map[j - 1] * map[i - j]; 12 return map[n]; 13 } 14 }