zoukankan      html  css  js  c++  java
  • Best Time to Buy and Sell Stock IV

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most k transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    Credits:
    Special thanks to @Freezen for adding this problem and creating all test cases.

     1 public class Solution {
     2     public int maxProfit(int k, int[] prices) {
     3         if(prices == null || prices.length == 0) return 0;
     4         int len = prices.length;
     5         if (k >= len / 2) return quickSolve(prices);
     6         int[][] dp = new int[k + 1][len];
     7         for (int i = 1; i <= k; i++) {
     8             int tmpMax = -prices[0];
     9             for(int j = 1; j < len; j ++){
    10                 dp[i][j] = Math.max(dp[i][j - 1], prices[j] + tmpMax);
    11                 tmpMax = Math.max(tmpMax, dp[i - 1][j - 1] - prices[j]);
    12             }
    13         }
    14         return dp[k][len - 1];
    15     }
    16     
    17     public int quickSolve(int[] prices){
    18         int result = 0;
    19         for(int i = 1; i < prices.length; i ++){
    20             if(prices[i] - prices[i - 1] > 0) result += prices[i] - prices[i - 1];
    21         }
    22         return result;
    23     }
    24 }

    tmpMax means the maximum profit of just doing at most i-1 transactions, using at most first j-1 prices, and buying the stock at price[j] - this is used for the next loop.

     1 public class Solution {
     2     public int maxProfit(int k, int[] prices) {
     3         if(prices == null || prices.length < 2 || k == 0) return 0;
     4         int len = prices.length;
     5         if(k * 2 >= len){//actually we can do as many transactions as we want
     6             int result = 0;
     7             for(int i = 1; i < len; i ++){
     8                 if(prices[i] - prices[i - 1] > 0) result += prices[i] - prices[i - 1];
     9             }
    10             return result;
    11         }else{//transactions time is limited
    12             int[][] dp = new int[k + 1][len];
    13             for(int i = 1; i <= k; i ++){
    14                 int MaxPre = -prices[0];
    15                 for(int j = 1; j < len; j ++){
    16                     dp[i][j] = Math.max(dp[i][j - 1], MaxPre + prices[j]);
    17                     MaxPre = Math.max(MaxPre, dp[i - 1][j - 1] - prices[j]);
    18                 }
    19             }
    20             return dp[k][len - 1];
    21         }
    22     }
    23 }
  • 相关阅读:
    UVALive 5066 Fire Drill --BFS+DP
    Codeforces 486E LIS of Sequence --树状数组求LIS
    Codeforces 460D Little Victor and Set --分类讨论+构造
    Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组
    计算机组成原理知识总结
    HDU 5155 Harry And Magic Box --DP
    【Python数据分析】简单爬虫 爬取知乎神回复
    《查拉图斯特拉如是说》读书笔记
    POJ 3384 Feng Shui --直线切平面
    POJ 2540 Hotter Colder --半平面交
  • 原文地址:https://www.cnblogs.com/reynold-lei/p/4365657.html
Copyright © 2011-2022 走看看