zoukankan      html  css  js  c++  java
  • Word Ladder II Graph

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

    1. Only one letter can be changed at a time
    2. Each intermediate word must exist in the dictionary

    For example,

    Given:
    start = "hit"
    end = "cog"
    dict = ["hot","dot","dog","lot","log"]

    Return

      [
        ["hit","hot","dot","dog","cog"],
        ["hit","hot","lot","log","cog"]
      ]
    

    Note:

    • All words have the same length.
    • All words contain only lowercase alphabetic characters.

    The solution contains two steps 1 Use BFS to construct a graph. 2. Use DFS to construct the paths from end to start.Both solutions got AC within 1s.

    The first step BFS is quite important. I summarized three tricks

    1) Using a MAP to store the min ladder of each word, or use a SET to store the words visited in current ladder, when the current ladder was completed, delete the visited words from unvisited. That's why I have two similar solutions.

    2) Use Character iteration to find all possible paths. Do not compare one word to all the other words and check if they only differ by one character.

    3) One word is allowed to be inserted into the queue only ONCE. See my comments.

    The idea is to use bfs build the graph level by level, use Map<String,Set> to store the parents of string, then use dfs to find the path.

     1 public class Solution {
     2     List<List<String>> result;
     3     HashMap<String, Set<String>> wordGraph;
     4     public List<List<String>> findLadders(String start, String end, Set<String> dict) {
     5         result = new ArrayList<List<String>>();
     6         if(dict == null || dict.size() == 0) return result;
     7         wordGraph = new HashMap<String, Set<String>>();
     8         wordGraph.put(start, new HashSet<String>());
     9         LinkedList<String> queue = new LinkedList<String>();
    10         HashSet<String> used = new HashSet<String>();
    11         queue.add(start);
    12         queue.add(null);
    13         boolean flg = false;
    14         while(queue.size() != 1){
    15             String cur = queue.poll();
    16             used.add(cur);
    17             if(cur == null){
    18                 if(flg == true) break;
    19                 else queue.add(null);
    20             }else{
    21                 char[] arr = cur.toCharArray();
    22                 for(int i = 0; i < cur.length(); i ++){
    23                     for(char j = 'a'; j <= 'z'; j ++){
    24                         if(arr[i] == j) continue;
    25                         char tmp = arr[i];
    26                         arr[i] = j;
    27                         String tmpString = String.valueOf(arr);
    28                         if(end.equals(tmpString)){
    29                             flg = true;
    30                             if(!wordGraph.containsKey(tmpString)){
    31                                 Set<String> parents = new HashSet<String>();
    32                                 parents.add(cur);
    33                                 wordGraph.put(tmpString, parents);
    34                             }else{
    35                                 wordGraph.get(tmpString).add(cur);
    36                             }
    37                         }else if(dict.contains(tmpString) && !used.contains(tmpString) && flg != true){
    38                             if(!wordGraph.containsKey(tmpString)){
    39                                 Set<String> parents = new HashSet<String>();
    40                                 parents.add(cur);
    41                                 wordGraph.put(tmpString, parents);
    42                             }else{
    43                                 wordGraph.get(tmpString).add(cur);
    44                             }
    45                             queue.add(tmpString);
    46                             
    47                         }
    48                         arr[i] = tmp;
    49                     }
    50                 }
    51             }
    52         }
    53         if(wordGraph.containsKey(end))
    54             findPath(end, start, new ArrayList<String>());
    55         return result;
    56     }
    57         
    58     
    59     private void findPath(String cur, String goal, ArrayList<String> row){
    60         if(cur.equals(goal)){
    61             row.add(0, cur);
    62             result.add(row);
    63         }else{
    64             for(String pre : wordGraph.get(cur)){
    65                 row.add(0, cur);
    66                 findPath(pre, goal, new ArrayList<String>(row));
    67                 row.remove(0);
    68             }
    69         }
    70     }
    71 }
  • 相关阅读:
    kali网卡配置文件
    haproxy配置文件详解和ACL功能
    Linux查询端口是否被占用的四种方法
    为Linux配置常用源:epel和IUS
    高可用之KeepAlived(2):keepalived+lvs
    高可用之KeepAlived(一):基本概念和配置文件分析
    应用负载均衡之LVS(四):详细剖析VS/NAT和VS/DR模式
    应用负载均衡之LVS(二):VS_TUN和VS_DR的arp问题
    wget命令的几个常用选项和示例
    应用负载均衡之LVS(一):基本概念和三种模式
  • 原文地址:https://www.cnblogs.com/reynold-lei/p/4401974.html
Copyright © 2011-2022 走看看