zoukankan      html  css  js  c++  java
  • MapReduce(1): Prepare input for Mappers

    According to Wikipedia MapReduce, there are two ways to illustrate MapReduce. One contains three steps: Map, Shuffle and Reduce; Another one with 5 steps is my preference:

    a. Prepare the Map() input,

    b. Run the user-provided Map() code

    c. "Shuffle" the Map output to the Reduce processors,

    d. Run the user-provided Reduce() code,

    e. Produce the final output

    This blog focuses on how to prepare the Map() input:

    1. Block and InputSplit:

    As shown in the HDFS blogs, super huge dataset is physically stored in HDFS. But Mappers do not directly process physical blocks, instead InputSplits converts the physical representation of the block into logical for the Hadoop Mappers.

    InputSplit  is the logical representation of data. It describes a unit of work that contains a single map task in a MapReduce program. It is created by InputFormat. FileInputFormat, by default, breaks a file into 128MB chunks (same as blocks in HDFS),framework assigns one split to each Map function. Inputsplit does not contain the input data; it is just a reference to the data.

    2. RecordReader:

    It determines how an InputSplit is passed into a Map function. The RecordReader instance is defined by the InputFormat. By default, it uses TextInputFormat for converting data into a key-value pair. TextInputFormat provides 2 types of RecordReaders: LineRecordReader, SequenceFileRecordReader

    References:

    https://hadoopabcd.wordpress.com/2015/03/10/hdfs-file-block-and-input-split/

    https://en.wikipedia.org/wiki/MapReduce

    https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/

    https://zhuanlan.zhihu.com/p/34849261

    https://www.edureka.co/blog/mapreduce-tutorial/

  • 相关阅读:
    Python的正则表达式
    Python的异常处理
    Python的类和对象
    Python乘法口诀表
    Python的文件操作
    三层架构介绍和MVC设计模型介绍
    spring的组件使用
    IDEA使用maven搭建spring项目
    Java集合——Collection接口
    Java集合——概述
  • 原文地址:https://www.cnblogs.com/rhyswang/p/10550435.html
Copyright © 2011-2022 走看看