zoukankan      html  css  js  c++  java
  • MapReduce(1): Prepare input for Mappers

    According to Wikipedia MapReduce, there are two ways to illustrate MapReduce. One contains three steps: Map, Shuffle and Reduce; Another one with 5 steps is my preference:

    a. Prepare the Map() input,

    b. Run the user-provided Map() code

    c. "Shuffle" the Map output to the Reduce processors,

    d. Run the user-provided Reduce() code,

    e. Produce the final output

    This blog focuses on how to prepare the Map() input:

    1. Block and InputSplit:

    As shown in the HDFS blogs, super huge dataset is physically stored in HDFS. But Mappers do not directly process physical blocks, instead InputSplits converts the physical representation of the block into logical for the Hadoop Mappers.

    InputSplit  is the logical representation of data. It describes a unit of work that contains a single map task in a MapReduce program. It is created by InputFormat. FileInputFormat, by default, breaks a file into 128MB chunks (same as blocks in HDFS),framework assigns one split to each Map function. Inputsplit does not contain the input data; it is just a reference to the data.

    2. RecordReader:

    It determines how an InputSplit is passed into a Map function. The RecordReader instance is defined by the InputFormat. By default, it uses TextInputFormat for converting data into a key-value pair. TextInputFormat provides 2 types of RecordReaders: LineRecordReader, SequenceFileRecordReader

    References:

    https://hadoopabcd.wordpress.com/2015/03/10/hdfs-file-block-and-input-split/

    https://en.wikipedia.org/wiki/MapReduce

    https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/

    https://zhuanlan.zhihu.com/p/34849261

    https://www.edureka.co/blog/mapreduce-tutorial/

  • 相关阅读:
    Oracle时间日期操作
    c# 语音卡控制语音卡实现电话录音
    ORACLE日期时间函数大全
    oracle的表分区
    如何应付表数据过大的查询问题?(如何尽量避免大表关联)[转]
    优化SQL Server数据库
    oracle知识回顾
    增强现实 artoolkit
    高负载系统架构设计
    三套.net支持库
  • 原文地址:https://www.cnblogs.com/rhyswang/p/10550435.html
Copyright © 2011-2022 走看看