zoukankan      html  css  js  c++  java
  • MapReduce(1): Prepare input for Mappers

    According to Wikipedia MapReduce, there are two ways to illustrate MapReduce. One contains three steps: Map, Shuffle and Reduce; Another one with 5 steps is my preference:

    a. Prepare the Map() input,

    b. Run the user-provided Map() code

    c. "Shuffle" the Map output to the Reduce processors,

    d. Run the user-provided Reduce() code,

    e. Produce the final output

    This blog focuses on how to prepare the Map() input:

    1. Block and InputSplit:

    As shown in the HDFS blogs, super huge dataset is physically stored in HDFS. But Mappers do not directly process physical blocks, instead InputSplits converts the physical representation of the block into logical for the Hadoop Mappers.

    InputSplit  is the logical representation of data. It describes a unit of work that contains a single map task in a MapReduce program. It is created by InputFormat. FileInputFormat, by default, breaks a file into 128MB chunks (same as blocks in HDFS),framework assigns one split to each Map function. Inputsplit does not contain the input data; it is just a reference to the data.

    2. RecordReader:

    It determines how an InputSplit is passed into a Map function. The RecordReader instance is defined by the InputFormat. By default, it uses TextInputFormat for converting data into a key-value pair. TextInputFormat provides 2 types of RecordReaders: LineRecordReader, SequenceFileRecordReader

    References:

    https://hadoopabcd.wordpress.com/2015/03/10/hdfs-file-block-and-input-split/

    https://en.wikipedia.org/wiki/MapReduce

    https://data-flair.training/blogs/shuffling-and-sorting-in-hadoop/

    https://zhuanlan.zhihu.com/p/34849261

    https://www.edureka.co/blog/mapreduce-tutorial/

  • 相关阅读:
    Oracle 删除表中的一整列
    如何查看数据库中表的创建时间
    Oracle数据库的简单数据恢复
    分治和动态规划
    深入浅出 妙用Javascript中apply、call、bind
    CSS3 Background-size
    WampServer 2.5设置外网访问/局域网手机访问(403 Forbidden错误解决方法)
    js中apply方法的使用
    Leetcode No.1 Two Sum
    Python的sys.argv使用说明
  • 原文地址:https://www.cnblogs.com/rhyswang/p/10550435.html
Copyright © 2011-2022 走看看