zoukankan      html  css  js  c++  java
  • Using Tensorflow SavedModel Format to Save and Do Predictions

    We are now trying to deploy our Deep Learning model onto Google Cloud. It is required to use Google Function to trigger the Deep Learning predictions. However, when pre-trained models are stored on cloud, it is impossible to get the exact directory path and restore the tensorflow session like what we did on local machine.

    So we turn to use SavedModel, which is quite like a 'Prediction Mode' of tensorflow. According to official turotial: a SavedModel contains a complete TensorFlow program, including weights and computation. It does not require the original model building code to run, which makes it useful for sharing or deploying.

    The Definition of our graph, just here to show the input and output tensors:

    '''RNN Model Definition'''
    tf.reset_default_graph()
    ''''''
    #define inputs
    tf_x = tf.placeholder(tf.float32, [None, window_size,1],name='x')
    tf_y = tf.placeholder(tf.int32, [None, 2],name='y')
    
    
    cells = [tf.keras.layers.LSTMCell(units=n) for n in num_units]
    stacked_rnn_cell = tf.keras.layers.StackedRNNCells(cells)
    outputs, (h_c, h_n) = tf.nn.dynamic_rnn(
            stacked_rnn_cell,                   # cell you have chosen
            tf_x,                      # input
            initial_state=None,         # the initial hidden state
            dtype=tf.float32,           # must given if set initial_state = None
            time_major=False,           # False: (batch, time step, input); True: (time step, batch, input)
    )
    l1 = tf.layers.dense(outputs[:, -1, :],32,activation=tf.nn.relu,name='l1')
    l2 = tf.layers.dense(l1,8,activation=tf.nn.relu,name='l6')
    pred = tf.layers.dense(l2,2,activation=tf.nn.relu,name='pred')
    
    with tf.name_scope('loss'):
        cross_entropy =  tf.nn.softmax_cross_entropy_with_logits_v2(labels=tf_y, logits=pred) 
        loss = tf.reduce_mean(cross_entropy)
        tf.summary.scalar("loss",tensor=loss)
    train_op = tf.train.AdamOptimizer(LR).minimize(loss)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(tf_y, axis=1), tf.argmax(pred, axis=1)), tf.float32))
    
    init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) 
    saver = tf.train.Saver()
    

    Train and Save the model, we use simple_save:

    sess = tf.Session()
    sess.run(init_op)
    
    for i in range(0,n):
        sess.run(train_op,{tf_x:batch_X , tf_y:batch_y})
        ...   
    tf.saved_model.simple_save(sess, 'simple_save/model', 
                               inputs={"x": tf_x},outputs={"pred": pred})
    sess.close()
    

    Restore and Predict:

    with tf.Session(graph=tf.Graph()) as sess:
        tf.saved_model.loader.load(sess, ["serve"], 'simple_save_test/model')
        batch = sess.run('pred/Relu:0',feed_dict={'x:0':dataX.reshape([-1,24,1])}) 
        print(batch)
    

    Reference:

     medium post: https://medium.com/@jsflo.dev/saving-and-loading-a-tensorflow-model-using-the-savedmodel-api-17645576527

    The official tutorial of Tensorflow: https://www.tensorflow.org/guide/saved_model

  • 相关阅读:
    前端发展态势 && 前端工作流程个人浅析
    Mac在Django安装mysqlclient时报错
    rabbitMQ简单配置及OSError: [Errno 9] Bad file descriptor问题
    MacOS 出现command not found
    Celery简单说明以及在Django中的配置
    Celery目录结构配置
    shell脚本之安装docker
    阿里云按需购买设置
    Java中的关键字 transient
    jvm常用参数
  • 原文地址:https://www.cnblogs.com/rhyswang/p/10971237.html
Copyright © 2011-2022 走看看