zoukankan      html  css  js  c++  java
  • Visualizing High Dimensional Decision Boundary into a 3D Space

    I had been searching for so long on google for solutions to visualize a high dimensional decision boundaries, but it seems no so many people having done that. Actually It is neccesary especially for making sense of adversarial attacks.

    The data preparation part is omitted, because it differs in various datasets. The data I used is AMDds for power data classification, which has a class 'inactive' and class 'active'. The two classes are imbalanced. You could just consider this dataset as a numpy variable X with 60 dimensions, Y is the label for X.

    The targeted model is a well-trained keras deep neural network.

    from tensorflow.keras.models import load_model
    model=load_model('power_classification_model.h5')
    

    Step1: Use PCA to fit the dataset, reducing the dimension from 60 to 2.

    from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    conponent = pca.fit_transform(X)
    new_data = np.concatenate([conponent,Y.reshape([-1,1])],axis=1)
    principalDf = pd.DataFrame(data = new_data
                 , columns = ['principal component 1', 'principal component 2','target'])
    principalDf.head()
    

    Step2: Visualize the dataset on the 2d space to decide the range of the 2 components:

    groups = principalDf.groupby('target')
    fig = plt.figure() 
    ax = fig.add_subplot()
    colors = ['#606eca','#c13550']
    i=0
    for name, group in groups:
        ax.plot(group['principal component 1'], group['principal component 2'], 
                  marker='o', linestyle='', ms=1, label=name,color=colors[i])
        i=i+1
    ax.legend(['Inactive','Active'])
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.show()
    

     

    Step3: Within the range of two components, create many points on grids. I choose a relatively low granularity to save some computational power, you can generate more points.

    X1 = np.arange(-10000, 50000, 1000)
    X2 = np.arange(-30000, 30000, 1000)
    xx, yy = np.meshgrid(X1, X2)
    Xfull = np.c_[xx.ravel(), yy.ravel()]
    

    Step4: Inverse the PCA procedure to recover the grid points in the original space (from 2D to 60D), and the results for these points can be derived by querying the targeted model.

    prob_mat = np.zeros(Xfull.shape[0])
    for i in range (Xfull.shape[0]):  
      original_signal = pca.inverse_transform(Xfull[i,:])
      prob = model.predict_proba(original_signal.reshape([-1,60]))
      prob_mat[i] = prob[0,0]
      print(i)
    prob_new = prob_mat.reshape([60,60])
    

    Step5: Visualize the 3d surface.

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(xx, yy, prob_new, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False,alpha=0.8)
    fig.colorbar(surf, shrink=0.5, aspect=5)
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.show()
    

     

  • 相关阅读:
    解决Linux中java.net.UnknownHostException: oracledb.sys.iflashbuy.com问题
    Jenkins学习九:Jenkins插件之构建MSBuild
    Fitnesse初体验
    Jenkins遇到问题三:调整jdk版本不生效的解决办法
    linux强制用户下线
    Jenkins学习八:Jenkins语言本地化
    一个完整的JENKINS下的ANT BUILD.XML文件
    -bash: rz: command not found
    Jenkins学习七:Jenkins的授权和访问控制
    Android ormlite like() function is not working
  • 原文地址:https://www.cnblogs.com/rhyswang/p/12508914.html
Copyright © 2011-2022 走看看