本人原创,转载请注明出处:http://blog.csdn.net/panjunbiao/article/details/12773163
下载Hadoop程序包,下载地址:http://hadoop.apache.org/releases.html#Download
如果是在CentOS服务器安装,则执行:
yum install hadoop-1.2.1-1.x86_64.rpm
如果是在Linux或者Mac OS X开发环境下,可以下载bin或者源码包,然后解压缩即可。
验证hadoop二进制执行文件(假设放在~/Developments/toolkits/hadoop-1.2.1文件夹中):
cd ~/Developments/toolkits/hadoop-1.2.1
执行hadoop程序:
bin/hadoop
Usage: hadoop [--config confdir] COMMAND where COMMAND is one of: namenode -format format the DFS filesystem secondarynamenode run the DFS secondary namenode namenode run the DFS namenode datanode run a DFS datanode...
出现hadoop命令用法帮助,表示二进制文件可执行。
创建Hello Hadoop的Java项目:
按照《Hadoop权威指南(Hadoop: The Definitive Guide)》的例子,创建3个程序文件。
MaxTemperature.java
/** * Created with IntelliJ IDEA. * User: james * Date: 8/27/13 * Time: 11:33 AM * To change this template use File | Settings | File Templates. */ import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
MaxTemperatureMapper.java
/** * Created with IntelliJ IDEA. * User: james * Date: 8/27/13 * Time: 11:28 AM * To change this template use File | Settings | File Templates. */ import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } }
MaxTemperatureReducer.java
/** * Created with IntelliJ IDEA. * User: james * Date: 8/27/13 * Time: 11:32 AM * To change this template use File | Settings | File Templates. */ import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } }
需要将hadoop-core-1.2.1.jar文件添加到项目的库中,这个jar文件在解压缩的文件夹中
编译之,假设项目编译到文件夹~/Developments/hello-hadoop/out/production/hello-hadoop/中,将这个文件夹位置输出到HADOOP_CLASSPATH:
export HADOOP_CLASSPATH=~/Developments/hello-hadoop/out/production/hello-hadoop/
另外还要注意定义JAVA_HOME,以Mac OS X为例:
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_21.jdk/Contents/Home/
下载天气数据(
http://hadoopbook.com/code.html
),上面有1901年和1902年的天气例子数据。
进入hadoop文件夹:
cd ~/Developments/toolkits/hadoop-1.2.1
执行例子程序(这个MaxTemperature是hadoop程序通过HADOOP_CLASSPATH查找到的):
bin/hadoop MaxTemperature 1901 output
2013-10-15 17:56:40.412 java[5522:1703] Unable to load realm info from SCDynamicStore 13/10/15 17:56:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 13/10/15 17:56:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 13/10/15 17:56:41 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String). 13/10/15 17:56:41 INFO input.FileInputFormat: Total input paths to process : 1 13/10/15 17:56:41 WARN snappy.LoadSnappy: Snappy native library not loaded 13/10/15 17:56:42 INFO mapred.JobClient: Running job: job_local1783370164_0001 13/10/15 17:56:42 INFO mapred.LocalJobRunner: Waiting for map tasks 13/10/15 17:56:42 INFO mapred.LocalJobRunner: Starting task: attempt_local1783370164_0001_m_000000_0 13/10/15 17:56:42 INFO mapred.Task: Using ResourceCalculatorPlugin : null 13/10/15 17:56:42 INFO mapred.MapTask: Processing split: file:/Users/james/Developments/hello-hadoop/out/production/hello-hadoop/1901:0+888190 13/10/15 17:56:42 INFO mapred.MapTask: io.sort.mb = 100 13/10/15 17:56:42 INFO mapred.MapTask: data buffer = 79691776/99614720 13/10/15 17:56:42 INFO mapred.MapTask: record buffer = 262144/327680 13/10/15 17:56:42 INFO mapred.MapTask: Starting flush of map output 13/10/15 17:56:42 INFO mapred.MapTask: Finished spill 0 13/10/15 17:56:42 INFO mapred.Task: Task:attempt_local1783370164_0001_m_000000_0 is done. And is in the process of commiting 13/10/15 17:56:42 INFO mapred.LocalJobRunner: 13/10/15 17:56:42 INFO mapred.Task: Task 'attempt_local1783370164_0001_m_000000_0' done. 13/10/15 17:56:42 INFO mapred.LocalJobRunner: Finishing task: attempt_local1783370164_0001_m_000000_0 13/10/15 17:56:42 INFO mapred.LocalJobRunner: Map task executor complete. 13/10/15 17:56:42 INFO mapred.Task: Using ResourceCalculatorPlugin : null 13/10/15 17:56:42 INFO mapred.LocalJobRunner: 13/10/15 17:56:42 INFO mapred.Merger: Merging 1 sorted segments 13/10/15 17:56:42 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 72206 bytes 13/10/15 17:56:42 INFO mapred.LocalJobRunner: 13/10/15 17:56:42 INFO mapred.Task: Task:attempt_local1783370164_0001_r_000000_0 is done. And is in the process of commiting 13/10/15 17:56:42 INFO mapred.LocalJobRunner: 13/10/15 17:56:42 INFO mapred.Task: Task attempt_local1783370164_0001_r_000000_0 is allowed to commit now 13/10/15 17:56:42 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1783370164_0001_r_000000_0' to output 13/10/15 17:56:42 INFO mapred.LocalJobRunner: reduce > reduce 13/10/15 17:56:42 INFO mapred.Task: Task 'attempt_local1783370164_0001_r_000000_0' done. 13/10/15 17:56:43 INFO mapred.JobClient: map 100% reduce 100% 13/10/15 17:56:43 INFO mapred.JobClient: Job complete: job_local1783370164_0001 13/10/15 17:56:43 INFO mapred.JobClient: Counters: 17 13/10/15 17:56:43 INFO mapred.JobClient: File Output Format Counters 13/10/15 17:56:43 INFO mapred.JobClient: Bytes Written=21 13/10/15 17:56:43 INFO mapred.JobClient: File Input Format Counters 13/10/15 17:56:43 INFO mapred.JobClient: Bytes Read=888190 13/10/15 17:56:43 INFO mapred.JobClient: FileSystemCounters 13/10/15 17:56:43 INFO mapred.JobClient: FILE_BYTES_READ=1848986 13/10/15 17:56:43 INFO mapred.JobClient: FILE_BYTES_WRITTEN=245951 13/10/15 17:56:43 INFO mapred.JobClient: Map-Reduce Framework 13/10/15 17:56:43 INFO mapred.JobClient: Reduce input groups=1 13/10/15 17:56:43 INFO mapred.JobClient: Map output materialized bytes=72210 13/10/15 17:56:43 INFO mapred.JobClient: Combine output records=0 13/10/15 17:56:43 INFO mapred.JobClient: Map input records=6565 13/10/15 17:56:43 INFO mapred.JobClient: Reduce shuffle bytes=0 13/10/15 17:56:43 INFO mapred.JobClient: Reduce output records=1 13/10/15 17:56:43 INFO mapred.JobClient: Spilled Records=13128 13/10/15 17:56:43 INFO mapred.JobClient: Map output bytes=59076 13/10/15 17:56:43 INFO mapred.JobClient: Total committed heap usage (bytes)=331350016 13/10/15 17:56:43 INFO mapred.JobClient: SPLIT_RAW_BYTES=141 13/10/15 17:56:43 INFO mapred.JobClient: Map output records=6564 13/10/15 17:56:43 INFO mapred.JobClient: Combine input records=0 13/10/15 17:56:43 INFO mapred.JobClient: Reduce input records=6564
查看输出结果
ls output/
_SUCCESS part-r-00000
vi output/part-r-00000
1901 317