zoukankan      html  css  js  c++  java
  • 枚举最短路径+SPFA


    Harry Potter and the Final Battle

    Description

    The final battle is coming. Now Harry Potter is located at city 1, and Voldemort is located at city n. To make the world peace as soon as possible, Of course, Harry Potter will choose the shortest road between city 1 and city n. But unfortunately, Voldemort is so powerful that he can choose to destroy any one of the existing roads as he wish, but he can only destroy one. Now given the roads between cities, you are to give the shortest time that Harry Potter can reach city n and begin the battle in the worst case.
     

    Input

    First line, case number t (t<=20).
    Then for each case: an integer n (2<=n<=1000) means the number of city in the magical world, the cities are numbered from 1 to n. Then an integer m means the roads in the magical world, m (0< m <=50000). Following m lines, each line with three integer u, v, w (u != v,1 <=u, v<=n, 1<=w <1000), separated by a single space. It means there is a bidirectional road between u and v with the cost of time w. There may be multiple roads between two cities.
     

    Output

    Each case per line: the shortest time to reach city n in the worst case. If it is impossible to reach city n in the worst case, output “-1”.
     

    Sample Input

    3 4 4 1 2 5 2 4 10 1 3 3 3 4 8 3 2 1 2 5 2 3 10 2 2 1 2 1 1 2 2
     

    Sample Output

    15 -1 2
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    
    const int N=1010;
    const int M=100010;
    const int INF=0xffffff;
    
    struct Edge
    {
        int u;
        int to;
        int w;
        int flag;
        int next;
    } e[M];
    
    int head[N];
    int dist[N];
    int path[N];
    int inq[N];
    int n,m,cnt,flag;
    
    void AddEdge(int u,int v,int w)
    {
        e[cnt].u=u;
        e[cnt].to=v;
        e[cnt].w=w;
        e[cnt].flag=1;
        e[cnt].next=head[u];
        head[u]=cnt++;
    }
    
    int SPFA(int s)
    {
        queue<int>Q;
        for(int i=1; i<=n; i++)
        {
            dist[i]=INF;
            inq[i]=0;
        }
        dist[s]=0;
        inq[s]=1;
        Q.push(s);
        while(!Q.empty())
        {
            int u=Q.front();
            Q.pop();
            inq[u]=0;
            for(int j=head[u]; j!=-1; j=e[j].next)
            {
                int x=e[j].to;
                if(e[j].flag&&dist[x]>dist[u]+e[j].w)
                {
                    dist[x]=dist[u]+e[j].w;
                    if(!flag)
                        path[x]=j;
                    if(!inq[x])
                    {
                        Q.push(x);
                        inq[x]=1;
                    }
                }
            }
        }
        return dist[n];
    }
    
    int main()
    {
        //freopen("C:\Users\Administrator\Desktop\kd.txt","r",stdin);
        int t;
        scanf("%d",&t);
        while(t--)
        {
            cnt=flag=0;
            memset(head,-1,sizeof(head));
            scanf("%d%d",&n,&m);
            while(m--)
            {
            	int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                AddEdge(u,v,w);
                AddEdge(v,u,w);
            }
            memset(path,-1,sizeof(path));
            SPFA(1);
            flag=1;
            int i=n,j=-1;
            int res=-1;
            while(path[i]!=-1)
            {
                j=path[i];
                e[j].flag=e[j+1].flag=0;
                int tmp=SPFA(1);
                e[j].flag=e[j+1].flag=1;
                if(tmp>res)
                    res=tmp;
                i=e[j].u;
            }
            if(res<INF)
                printf("%d
    ",res);
            else
                puts("-1");
        }
    }
    


  • 相关阅读:
    Markdown的简介(转)
    写在二月的尾巴上
    The Pragmatic Programmer 读书笔记
    C/C++语言的一些精简归纳
    一般常用设计模式及原则的思想小结
    常用UML模型简要小结
    LeetCode 101. Symmetric Tree
    LeetCode 100. Same Tree
    LeetCode 99. Recover Binary Search Tree
    线索二叉树的建立与遍历
  • 原文地址:https://www.cnblogs.com/riasky/p/3431024.html
Copyright © 2011-2022 走看看