You have array a1, a2, ..., an. Segment [l, r] (1 ≤ l ≤ r ≤ n) is good if ai = ai - 1 + ai - 2, for all i (l + 2 ≤ i ≤ r).
Let's define len([l, r]) = r - l + 1, len([l, r]) is the length of the segment [l, r]. Segment [l1, r1], is longer than segment [l2, r2], if len([l1, r1]) > len([l2, r2]).
Your task is to find a good segment of the maximum length in array a. Note that a segment of length 1 or 2 is always good.
Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of elements in the array. The second line contains integers: a1, a2, ..., an (0 ≤ ai ≤ 109).
Output
Print the length of the longest good segment in array a.
Sample test(s)
Input
10 1 2 3 5 8 13 21 34 55 89
Output
10
Input
5 1 1 1 1 1
Output
2
找出符合a[i] = a[i-1]+a[i-2]的最长长度
没有考虑0的状况。。。。。。蛋疼,长久没做CF了,坑成球了。。。
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int a[100005],b[100005],len; int main() { int maxn,sum; int i,n; while(~scanf("%d",&n)) { sum = 0; for(i = 0; i<n; i++) { scanf("%d",&a[i]); sum+=a[i]; } if(sum == 0) { printf("%d ",n); continue; } if(n == 1) { printf("1 "); continue; } if(n == 2) { printf("2 "); continue; } len = 0; int l,r,flag = 1; for(i = 2; i<n; i++) { if(a[i-1]+a[i-2] == a[i]) b[len++] = 1; else b[len++] = 0; } maxn = 0; l = 0; r = 0; for(i = 0; i<len; i++) { if(b[i] == 1) { if(flag) { l = i; flag = 0; } else r = i; } else { if(r-l+1>maxn && r!=l) maxn = r-l+1; flag = 1; l = 0; r = 0; } } if(r-l+1>maxn && r!=l) maxn = r-l+1; printf("%d ",maxn+2); } return 0; }