zoukankan      html  css  js  c++  java
  • 图像处理之霍夫变换圆检测算法

    图像处理之霍夫变换圆检测算法

    之前写过一篇文章讲述霍夫变换原理与利用霍夫变换检测直线, 结果发现访问量还是蛮

    多,有点超出我的意料,很多人都留言说代码写得不好,没有注释,结构也不是很清晰,所以

    我萌发了再写一篇,介绍霍夫变换圆检测算法,同时也尽量的加上详细的注释,介绍代码

    结构.让更多的人能够读懂与理解.

    一:霍夫变换检测圆的数学原理


     

    根据极坐标,圆上任意一点的坐标可以表示为如上形式, 所以对于任意一个圆, 假设

    中心像素点p(x0, y0)像素点已知, 圆半径已知,则旋转360由极坐标方程可以得到每

    个点上得坐标同样,如果只是知道图像上像素点, 圆半径,旋转360°则中心点处的坐

    标值必定最强.这正是霍夫变换检测圆的数学原理.

     

    二:算法流程

    该算法大致可以分为以下几个步骤

     

    三:运行效果

    图像从空间坐标变换到极坐标效果, 最亮一点为圆心.

    图像从极坐标变换回到空间坐标,检测结果显示:


    四:关键代码解析

    个人觉得这次注释已经是非常的详细啦,而且我写的还是中文注释

     

    	/**
    	 * 霍夫变换处理 - 检测半径大小符合的圆的个数
    	 * 1. 将图像像素从2D空间坐标转换到极坐标空间
    	 * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间
    	 * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点
    	 * 4. 对找出的空间像素点赋予结果颜色(红色)
    	 * 5. 返回结果2D空间像素集合
    	 * @return int []
    	 */
    	public int[] process() {
    
    		// 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值
    		acc = new int[width * height];
    		for (int y = 0; y < height; y++) {
    			for (int x = 0; x < width; x++) {
    				acc[y * width + x] = 0;
    			}
    		}
    		int x0, y0;
    		double t;
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    
    				if ((input[y * width + x] & 0xff) == 255) {
    
    					for (int theta = 0; theta < 360; theta++) {
    						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
    						x0 = (int) Math.round(x - r * Math.cos(t));
    						y0 = (int) Math.round(y - r * Math.sin(t));
    						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
    							acc[x0 + (y0 * width)] += 1;
    						}
    					}
    				}
    			}
    		}
    
    		// now normalise to 255 and put in format for a pixel array
    		int max = 0;
    
    		// Find max acc value
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    
    				if (acc[x + (y * width)] > max) {
    					max = acc[x + (y * width)];
    				}
    			}
    		}
    
    		// 根据最大值,实现极坐标空间的灰度值归一化处理
    		int value;
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
    				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
    			}
    		}
    		
    		// 绘制发现的圆
    		findMaxima();
    		System.out.println("done");
    		return output;
    	}

    完整的算法源代码, 已经全部的加上注释

     

    package com.gloomyfish.image.transform.hough;
    /***
     * 
     * 传入的图像为二值图像,背景为黑色,目标前景颜色为为白色
     * @author gloomyfish
     * 
     */
    public class CircleHough {
    
    	private int[] input;
    	private int[] output;
    	private int width;
    	private int height;
    	private int[] acc;
    	private int accSize = 1;
    	private int[] results;
    	private int r; // 圆周的半径大小
    
    	public CircleHough() {
    		System.out.println("Hough Circle Detection...");
    	}
    
    	public void init(int[] inputIn, int widthIn, int heightIn, int radius) {
    		r = radius;
    		width = widthIn;
    		height = heightIn;
    		input = new int[width * height];
    		output = new int[width * height];
    		input = inputIn;
    		for (int y = 0; y < height; y++) {
    			for (int x = 0; x < width; x++) {
    				output[x + (width * y)] = 0xff000000; //默认图像背景颜色为黑色
    			}
    		}
    	}
    
    	public void setCircles(int circles) {
    		accSize = circles; // 检测的个数
    	}
    	
    	/**
    	 * 霍夫变换处理 - 检测半径大小符合的圆的个数
    	 * 1. 将图像像素从2D空间坐标转换到极坐标空间
    	 * 2. 在极坐标空间中归一化各个点强度,使之在0〜255之间
    	 * 3. 根据极坐标的R值与输入参数(圆的半径)相等,寻找2D空间的像素点
    	 * 4. 对找出的空间像素点赋予结果颜色(红色)
    	 * 5. 返回结果2D空间像素集合
    	 * @return int []
    	 */
    	public int[] process() {
    
    		// 对于圆的极坐标变换来说,我们需要360度的空间梯度叠加值
    		acc = new int[width * height];
    		for (int y = 0; y < height; y++) {
    			for (int x = 0; x < width; x++) {
    				acc[y * width + x] = 0;
    			}
    		}
    		int x0, y0;
    		double t;
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    
    				if ((input[y * width + x] & 0xff) == 255) {
    
    					for (int theta = 0; theta < 360; theta++) {
    						t = (theta * 3.14159265) / 180; // 角度值0 ~ 2*PI
    						x0 = (int) Math.round(x - r * Math.cos(t));
    						y0 = (int) Math.round(y - r * Math.sin(t));
    						if (x0 < width && x0 > 0 && y0 < height && y0 > 0) {
    							acc[x0 + (y0 * width)] += 1;
    						}
    					}
    				}
    			}
    		}
    
    		// now normalise to 255 and put in format for a pixel array
    		int max = 0;
    
    		// Find max acc value
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    
    				if (acc[x + (y * width)] > max) {
    					max = acc[x + (y * width)];
    				}
    			}
    		}
    
    		// 根据最大值,实现极坐标空间的灰度值归一化处理
    		int value;
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    				value = (int) (((double) acc[x + (y * width)] / (double) max) * 255.0);
    				acc[x + (y * width)] = 0xff000000 | (value << 16 | value << 8 | value);
    			}
    		}
    		
    		// 绘制发现的圆
    		findMaxima();
    		System.out.println("done");
    		return output;
    	}
    
    	private int[] findMaxima() {
    		results = new int[accSize * 3];
    		int[] output = new int[width * height];
    		
    		// 获取最大的前accSize个值
    		for (int x = 0; x < width; x++) {
    			for (int y = 0; y < height; y++) {
    				int value = (acc[x + (y * width)] & 0xff);
    
    				// if its higher than lowest value add it and then sort
    				if (value > results[(accSize - 1) * 3]) {
    
    					// add to bottom of array
    					results[(accSize - 1) * 3] = value; //像素值
    					results[(accSize - 1) * 3 + 1] = x; // 坐标X
    					results[(accSize - 1) * 3 + 2] = y; // 坐标Y
    
    					// shift up until its in right place
    					int i = (accSize - 2) * 3;
    					while ((i >= 0) && (results[i + 3] > results[i])) {
    						for (int j = 0; j < 3; j++) {
    							int temp = results[i + j];
    							results[i + j] = results[i + 3 + j];
    							results[i + 3 + j] = temp;
    						}
    						i = i - 3;
    						if (i < 0)
    							break;
    					}
    				}
    			}
    		}
    
    		// 根据找到的半径R,中心点像素坐标p(x, y),绘制圆在原图像上
    		System.out.println("top " + accSize + " matches:");
    		for (int i = accSize - 1; i >= 0; i--) {
    			drawCircle(results[i * 3], results[i * 3 + 1], results[i * 3 + 2]);
    		}
    		return output;
    	}
    
    	private void setPixel(int value, int xPos, int yPos) {
    		/// output[(yPos * width) + xPos] = 0xff000000 | (value << 16 | value << 8 | value);
    		output[(yPos * width) + xPos] = 0xffff0000;
    	}
    
    	// draw circle at x y
    	private void drawCircle(int pix, int xCenter, int yCenter) {
    		pix = 250; // 颜色值,默认为白色
    
    		int x, y, r2;
    		int radius = r;
    		r2 = r * r;
    		
    		// 绘制圆的上下左右四个点
    		setPixel(pix, xCenter, yCenter + radius);
    		setPixel(pix, xCenter, yCenter - radius);
    		setPixel(pix, xCenter + radius, yCenter);
    		setPixel(pix, xCenter - radius, yCenter);
    
    		y = radius;
    		x = 1;
    		y = (int) (Math.sqrt(r2 - 1) + 0.5);
    		
    		// 边缘填充算法, 其实可以直接对循环所有像素,计算到做中心点距离来做
    		// 这个方法是别人写的,发现超赞,超好!
    		while (x < y) {
    			setPixel(pix, xCenter + x, yCenter + y);
    			setPixel(pix, xCenter + x, yCenter - y);
    			setPixel(pix, xCenter - x, yCenter + y);
    			setPixel(pix, xCenter - x, yCenter - y);
    			setPixel(pix, xCenter + y, yCenter + x);
    			setPixel(pix, xCenter + y, yCenter - x);
    			setPixel(pix, xCenter - y, yCenter + x);
    			setPixel(pix, xCenter - y, yCenter - x);
    			x += 1;
    			y = (int) (Math.sqrt(r2 - x * x) + 0.5);
    		}
    		if (x == y) {
    			setPixel(pix, xCenter + x, yCenter + y);
    			setPixel(pix, xCenter + x, yCenter - y);
    			setPixel(pix, xCenter - x, yCenter + y);
    			setPixel(pix, xCenter - x, yCenter - y);
    		}
    	}
    
    	public int[] getAcc() {
    		return acc;
    	}
    
    }
    

    测试的UI类:

     

    package com.gloomyfish.image.transform.hough;
    
    import java.awt.BorderLayout;
    import java.awt.Color;
    import java.awt.Dimension;
    import java.awt.FlowLayout;
    import java.awt.Graphics;
    import java.awt.Graphics2D;
    import java.awt.GridLayout;
    import java.awt.event.ActionEvent;
    import java.awt.event.ActionListener;
    import java.awt.image.BufferedImage;
    import java.io.File;
    
    import javax.imageio.ImageIO;
    import javax.swing.BorderFactory;
    import javax.swing.JButton;
    import javax.swing.JFrame;
    import javax.swing.JPanel;
    import javax.swing.JSlider;
    import javax.swing.event.ChangeEvent;
    import javax.swing.event.ChangeListener;
    
    public class HoughUI extends JFrame implements ActionListener, ChangeListener {
    	/**
    	 * 
    	 */
    	public static final String CMD_LINE = "Line Detection";
    	public static final String CMD_CIRCLE = "Circle Detection";
    	private static final long serialVersionUID = 1L;
    	private BufferedImage sourceImage;
    // 	private BufferedImage houghImage;
    	private BufferedImage resultImage;
    	private JButton lineBtn;
    	private JButton circleBtn;
    	private JSlider radiusSlider;
    	private JSlider numberSlider;
    	public HoughUI(String imagePath)
    	{
    		super("GloomyFish-Image Process Demo");
    		try{
    			File file = new File(imagePath);
    			sourceImage = ImageIO.read(file);
    		} catch(Exception e){
    			e.printStackTrace();
    		}
    		initComponent();
    	}
    	
    	private void initComponent() {
    		int RADIUS_MIN = 1;
    		int RADIUS_INIT = 1;
    		int RADIUS_MAX = 51;
    		lineBtn = new JButton(CMD_LINE);
    		circleBtn = new JButton(CMD_CIRCLE);
    		radiusSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
    		radiusSlider.setMajorTickSpacing(10);
    		radiusSlider.setMinorTickSpacing(1);
    		radiusSlider.setPaintTicks(true);
    		radiusSlider.setPaintLabels(true);
    		numberSlider = new JSlider(JSlider.HORIZONTAL, RADIUS_MIN, RADIUS_MAX, RADIUS_INIT);
    		numberSlider.setMajorTickSpacing(10);
    		numberSlider.setMinorTickSpacing(1);
    		numberSlider.setPaintTicks(true);
    		numberSlider.setPaintLabels(true);
    		
    		JPanel sliderPanel = new JPanel();
    		sliderPanel.setLayout(new GridLayout(1, 2));
    		sliderPanel.setBorder(BorderFactory.createTitledBorder("Settings:"));
    		sliderPanel.add(radiusSlider);
    		sliderPanel.add(numberSlider);
    		JPanel btnPanel = new JPanel();
    		btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
    		btnPanel.add(lineBtn);
    		btnPanel.add(circleBtn);
    		
    		
    		JPanel imagePanel = new JPanel(){
    
    			private static final long serialVersionUID = 1L;
    
    			protected void paintComponent(Graphics g) {
    				if(sourceImage != null)
    				{
    					Graphics2D g2 = (Graphics2D) g;
    					g2.drawImage(sourceImage, 10, 10, sourceImage.getWidth(), sourceImage.getHeight(),null);
    					g2.setPaint(Color.BLUE);
    					g2.drawString("原图", 10, sourceImage.getHeight() + 30);
    					if(resultImage != null)
    					{
    						g2.drawImage(resultImage, resultImage.getWidth() + 20, 10, resultImage.getWidth(), resultImage.getHeight(), null);
    						g2.drawString("最终结果,红色是检测结果", resultImage.getWidth() + 40, sourceImage.getHeight() + 30);
    					}
    				}
    			}
    			
    		};
    		this.getContentPane().setLayout(new BorderLayout());
    		this.getContentPane().add(sliderPanel, BorderLayout.NORTH);
    		this.getContentPane().add(btnPanel, BorderLayout.SOUTH);
    		this.getContentPane().add(imagePanel, BorderLayout.CENTER);
    		
    		// setup listener
    		this.lineBtn.addActionListener(this);
    		this.circleBtn.addActionListener(this);
    		this.numberSlider.addChangeListener(this);
    		this.radiusSlider.addChangeListener(this);
    	}
    	
    	public static void main(String[] args)
    	{
    		String filePath = System.getProperty ("user.home") + "/Desktop/" + "zhigang/hough-test.png";
    		HoughUI frame = new HoughUI(filePath);
    		// HoughUI frame = new HoughUI("D:\image-test\lines.png");
    		frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    		frame.setPreferredSize(new Dimension(800, 600));
    		frame.pack();
    		frame.setVisible(true);
    	}
    
    	@Override
    	public void actionPerformed(ActionEvent e) {
    		if(e.getActionCommand().equals(CMD_LINE))
    		{
    			HoughFilter filter = new HoughFilter(HoughFilter.LINE_TYPE);
    			resultImage = filter.filter(sourceImage, null);
    			this.repaint();
    		}
    		else if(e.getActionCommand().equals(CMD_CIRCLE))
    		{
    			HoughFilter filter = new HoughFilter(HoughFilter.CIRCLE_TYPE);
    			resultImage = filter.filter(sourceImage, null);
    			// resultImage = filter.getHoughSpaceImage(sourceImage, null);
    			this.repaint();
    		}
    		
    	}
    
    	@Override
    	public void stateChanged(ChangeEvent e) {
    		// TODO Auto-generated method stub
    		
    	}
    }
    

    五:霍夫变换检测圆与直线的图像预处理

    使用霍夫变换检测圆与直线时候,一定要对图像进行预处理,灰度化以后,提取

    图像的边缘使用非最大信号压制得到一个像素宽的边缘, 这个步骤对霍夫变

    换非常重要.否则可能导致霍夫变换检测的严重失真.

    第一次用Mac发博文,编辑不好请见谅!

  • 相关阅读:
    未在本地计算机上注册“Microsoft.Ace.OleDb.12.0”提供程序解决办法
    禁止复制 + 锁右键 + 禁止全选(兼容IE Chrome等)
    Oracle面试题
    SQL面试题
    UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb9 in position 16: invalid start byte
    Python3 迭代器与生成器
    Python3 循环_break和continue语句及循环中的else子句
    Python3 编程第一步_关键字end
    Python3 编程第一步_斐波纳契数列_连续赋值
    Linux系统管理_主题02 :管好文件(1)_2.4 链接文件_ln
  • 原文地址:https://www.cnblogs.com/riasky/p/3468983.html
Copyright © 2011-2022 走看看