zoukankan      html  css  js  c++  java
  • UVA 10020 Minimal coverage(贪心 + 区间覆盖问题)

     Minimal coverage 

     

    The Problem

    Given several segments of line (int the X axis) with coordinates [Li,Ri]. You are to choose the minimal amount of them, such they would completely cover the segment [0,M].

     

    The Input

     

    The first line is the number of test cases, followed by a blank line.

    Each test case in the input should contains an integer M(1<=M<=5000), followed by pairs "Li Ri"(|Li|, |Ri|<=50000, i<=100000), each on a separate line. Each test case of input is terminated by pair "0 0".

    Each test case will be separated by a single line.

     

    The Output

    For each test case, in the first line of output your programm should print the minimal number of line segments which can cover segment [0,M]. In the following lines, the coordinates of segments, sorted by their left end (Li), should be printed in the same format as in the input. Pair "0 0" should not be printed. If [0,M] can not be covered by given line segments, your programm should print "0"(without quotes).

    Print a blank line between the outputs for two consecutive test cases.

     

    Sample Input

     

    2
    
    1
    -1 0
    -5 -3
    2 5
    0 0
    
    1
    -1 0
    0 1
    0 0
    

     

    Sample Output

     

    0
    
    1
    0 1
    

    题意:给定一个M,和一些区间[Li,Ri]。。要选出几个区间能完全覆盖住[0,M]区间。要求数量最少。。如果不能覆盖输出0.

    思路:贪心的思想。。把区间按Ri从大到小排序。 然后遇到一个满足的[Li,Ri],就更新缩小区间。。直到完全覆盖。

    注意[Li,Ri]只有满足Li小于等于且Ri大于当前覆盖区间左端这个条件。才能选中。

    代码:

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    
    int t;
    int start, end, qn, outn;
    struct M {
        int start;
        int end;
    } q[100005], out[100005];
    
    int cmp (M a, M b) {//按最大能覆盖到排序
        return a.end > b.end;
    }
    int main() {
        scanf("%d", &t);
        while (t --) {
    	qn = 0; outn = 0; start = 0;
    	scanf("%d", &end);
    	while (~scanf("%d%d", &q[qn].start, &q[qn].end) && q[qn].start + q[qn].end) {
    	    qn ++;
    	}
    	sort(q, q + qn, cmp);
    	while (start < end) {
    	    int i;
    	    for (i = 0; i < qn; i ++) {
    		if (q[i].start <= start && q[i].end > start) {
    		    start = q[i].end;//更新区间
    		    out[outn ++] = q[i];
    		    break;
    		}
    	    }
    	    if (i == qn) break;//如果没有一个满足条件的区间,直接结束。
    	}
    	if (start < end) printf("0
    ");
    	else {
    	    printf("%d
    ", outn);
    	    for (int i = 0; i < outn; i ++)
    		printf("%d %d
    ", out[i].start, out[i].end);
    	}
    	if (t) printf("
    ");
        }
        return 0;
    }



  • 相关阅读:
    对100以内的两位数,请使用一个两重循环打印出所有十位数数字比个位数数字小的数,
    给定两个不同的变量,不使用中间变量的情况下互换两个变量的值,使用函数直接生成
    将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
    POJ 2138 最长路
    POJ 2133 暴搜
    POJ 1988 带偏移量的并查集
    POJ 1989 贪心
    POJ 1991 DP
    POJ 3175 枚举
    POJ 3168 排序+扫描
  • 原文地址:https://www.cnblogs.com/riskyer/p/3263188.html
Copyright © 2011-2022 走看看