zoukankan      html  css  js  c++  java
  • hdu 4687 Boke and Tsukkomi

    Dancing link twice.

    Find the maximum combination numbers in the first time.

    Enumerate each node, dancing.

    If the new result is not optimaze, then push it into ans.

    #include <cstdio>
    #include <vector>
    #include <bitset>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    using namespace std;
    const int M = 200;
    
    // exact
    struct dancing {
    #define dfor(c, a, b) for (int c = a[b]; c != b; c = a[c])
      static const int row_size = 220, column_size = 220,
                   total_size = row_size*column_size;
      typedef int row[row_size],
              column[column_size],
              total[total_size];
      total l, r, u, d, in_column, in_row;
      bitset<50> use;
      column s;
      int index, current_row, row_head, limit, mx, rn;
      void init(int n, int m) {
        rn = m;
        limit = 0;
        index = ++n;
        for (int i = 0; i < n; i++) {
          l[i] = (i - 1 + n) % n;
          r[i] = (i + 1) % n;
          u[i] = d[i] = i;
        }
        current_row = 0;
        memset(s, 0, sizeof(s));
        use = ans = bitset<50>();
        mx = -1;
      }
      void push(int i, int j) {
        i++; j++;
        if (current_row < i) {
          row_head = l[index] = r[index] = index;
          current_row = i;
        }
        l[index] = l[row_head]; r[index] = row_head;
        r[l[row_head]] = index; l[row_head] = index;
        u[index] = u[j]; d[index] = j;
        d[u[j]] = index; u[j] = index;
        s[j]++;
        in_row[index] = i;
        in_column[index++] = j;
      }
      void exactly_remove(int c) {
        l[r[c]] = l[c];
        r[l[c]] = r[c];
        dfor(i, d, c) {
          dfor (j, r, i) {
            u[d[j]] = u[j];
            d[u[j]] = d[j];
            s[in_column[j]]--;
          }
        }
      }
      void exactly_resume(int c) {
        dfor(i, u, c) {
          dfor(j, l, i) {
            s[in_column[j]]++;
            d[u[j]] = u[d[j]] = j;
          }
        }
        r[l[c]] = l[r[c]] = c;
      }
      bool exactly_dance(int step = 0) {
        limit = max(limit, step);
        if (limit == mx) return 1;
        if (!r[0]) return 0;
        int has = rn-use.count();
        if (!has || step+has < limit || step+has < mx) return 0;
        int x = r[0];
        dfor(i, r, 0) {
          if (s[i] && s[i] < s[x] || !s[x]) {
            x = i;
          }
        }
        exactly_remove(x);
        dfor(i, d, x) {
          use[in_column[i]] = 1;
          dfor(j, r, i) {
            exactly_remove(in_column[j]);
          }
          if (exactly_dance(step + 1)) {
            return 1;
          }
          dfor(j, l, i) {
            exactly_resume(in_column[j]);
          }
          use[in_column[i]] = 0;
        }
        exactly_resume(x);
        return 0;
      }
    #undef dfor
    };
    dancing dlx;
    
    struct com {
      int b, t;
      void input() {
        scanf("%d%d", &b, &t);
      }
    } c[M];
    int n, m, g[M][50];
    
    int main() {
      for ( ; ~scanf("%d%d", &n, &m); ) {
        memset(g, 0, sizeof(g));
        dlx.init(n, m);
        for (int i = 0; i < m; i++) {
          c[i].input();
          if (c[i].b > c[i].t) swap(c[i].b, c[i].t);
          int b = c[i].b, t = c[i].t;
          g[i][b] = g[i][t] = 1;
          dlx.push(i, b-1);
          dlx.push(i, t-1);
        }
        dlx.exactly_dance();
        int limit = dlx.limit;
        vector<int> ans;
        int ban[M] = {0};
        for (int i = 0; i < m; i++) {
          int tm = m;
          memset(ban, 0, sizeof(int)*m);
          for (int j = 0; j < m; j++) if (i != j)
            if (g[j][c[i].b] || g[j][c[i].t]) {
              ban[j] = 1;
              tm--;
            }
          dlx.init(n, tm);
          for (int j = 0; j < m; j++) if (!ban[j]) {
            dlx.push(j, c[j].b-1);
            dlx.push(j, c[j].t-1);
          }
          dlx.mx = limit;
          dlx.exactly_dance();
          if (limit != dlx.limit) ans.push_back(i+1);
        }
        printf("%d
    ", (int)ans.size());
        if (!ans.size()) puts("");
        else for (int i = 0; i < ans.size(); i++)
          printf("%d%c", ans[i], i < ans.size()-1? ' ': '
    ');
      }
      return 0;
    }
    


  • 相关阅读:
    代理模式
    装饰模式
    策略模式
    简单工厂模式
    linux下进程相关操作
    散列表(哈希表)
    转载:最小生成树-Prim算法和Kruskal算法
    二叉排序树和平衡二叉树
    堆排序
    快速排序
  • 原文地址:https://www.cnblogs.com/riskyer/p/3271405.html
Copyright © 2011-2022 走看看