zoukankan      html  css  js  c++  java
  • hdu 1665 That Nice Euler Circuit(欧拉定理)

    输入n个点,然后从第一个点开始,依次链接点i->点i+1,最后回到第一点(输入中的点n),求得到的图形将平面分成了多少部分。

    根据欧拉定理 v_num + f_num - e_num = 2可知,求出点数跟边数便能求出平面数。

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdlib>
    #include<fstream>
    #include<sstream>
    #include<bitset>
    #include<vector>
    #include<string>
    #include<cstdio>
    #include<cmath>
    #include<stack>
    #include<queue>
    #include<stack>
    #include<map>
    #include<set>
    #define FF(i, a, b) for(int i=a; i<b; i++)
    #define FD(i, a, b) for(int i=a; i>=b; i--)
    #define REP(i, n) for(int i=0; i<n; i++)
    #define CLR(a, b) memset(a, b, sizeof(a))
    #define debug puts("**debug**")
    #define LL long long
    #define PB push_back
    #define eps 1e-10
    using namespace std;
    
    struct Point
    {
        double x, y;
        Point (double x=0, double y=0):x(x), y(y) {}
    };
    typedef Point Vector;
    
    Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
    
    bool operator < (const Point& a, const Point& b)
    {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    
    int dcmp(double x)
    {
        if(fabs(x) < eps) return 0;
        return x < 0 ? -1 : 1;
    }
    
    bool operator == (const Point& a, const Point& b)
    {
        return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
    }
    
    double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
    double Length(Vector A) { return sqrt(Dot(A, A)); }
    double Angel(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    
    double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
    double Area2(Vector A, Vector B, Vector C) { return Cross(B-A, C-A); }
    
    
    //向量逆时针旋转
    Vector Rotate(Vector A, double rad)
    {
        return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
    }
    
    //求直线p+tv和q+tw的交点 Cross(v, w) == 0无交点
    Point GetLineIntersection(Point p, Vector v, Point q, Vector w)
    {
        Vector u = p-q;
        double t = Cross(w, u) / Cross(v, w);
        return p + v*t;
    }
    
    
    //点p到直线ab的距离
    double DistanceToLine(Point p, Point a, Point b)
    {
        Vector v1 = b - a, v2 = p - a;
        return fabs(Cross(v1, v2)) / Length(v1);//如果不带fabs 得到的是有向距离
    }
    
    //点p到线段ab的距离
    double DistanceToSegment(Point p, Point a, Point b)
    {
        if(a == b) return Length(p-a);
        Vector v1 = b-a, v2 = p-a, v3 = p-b;
        if(dcmp(Dot(v1, v2) < 0)) return Length(v2);
        else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
        else return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点p在直线ab上的投影
    Point GetLineProjection(Point p, Point a, Point b)
    {
        Vector v = b-a;
        return a + v*(Dot(v, p-a) / Dot(v, v));
    }
    
    //点段相交判定
    bool SegmentItersection(Point a1, Point a2, Point b1, Point b2)
    {
        double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1),
        c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
        return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
    }
    
    //点在线段上
    bool OnSegment(Point p, Point a1, Point a2)
    {
        return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
    }
    
    //多变形面积
    double PolygonArea(Point* p, int n)
    {
        double ret = 0;
        FF(i, 1, n) ret += Cross(p[i]-p[0], p[i+1]-p[0]);
        return ret/2;
    }
    
    Point read_point()
    {
        Point a;
        scanf("%lf%lf", &a.x, &a.y);
        return a;
    }
    
    const int maxn = 301;
    Point p[maxn], v[maxn*1000];
    
    int main()
    {
        int n, kase = 1;
        while(scanf("%d", &n), n)
        {
            REP(i, n)
            {
                scanf("%lf%lf", &p[i].x, &p[i].y);
                v[i] = p[i];
            }
            int cnt = n-1, e_num = n-1;//原有边数
    
            //枚举所有边,求出相交出来的新的点
            REP(i, n-1) FF(j, i+1, n-1)
            if(SegmentItersection(p[i], p[i+1], p[j], p[j+1]))
            v[cnt++] = GetLineIntersection(p[i], p[i+1]-p[i], p[j], p[j+1]-p[j]);
    
            sort(v, v+cnt);
            int v_num = unique(v, v+cnt) - v;//去重点
    
            REP(i, v_num) REP(j, n-1)
            if(OnSegment(v[i], p[j], p[j+1])) e_num++;//线段被切割
            printf("Case %d: There are %d pieces.
    ", kase++, e_num + 2 - v_num);
        }
        return 0;
    }
    


  • 相关阅读:
    【BZOJ1495】[NOI2006]网络收费 暴力+DP
    【BZOJ2827】千山鸟飞绝 hash+堆+SBT
    【BZOJ2905】背单词 fail树+DFS序+线段树
    【BZOJ3120】Line 矩阵乘法
    【BZOJ1441】Min 拓展裴蜀定理
    【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP
    【BZOJ3416】Poi2013 Take-out 栈
    【BZOJ4244】邮戳拉力赛 DP
    【BZOJ3717】[PA2014]Pakowanie 状压DP
    【BZOJ1217】[HNOI2003]消防局的设立 树形DP
  • 原文地址:https://www.cnblogs.com/riskyer/p/3275780.html
Copyright © 2011-2022 走看看