zoukankan      html  css  js  c++  java
  • hdu4611 Balls Rearrangement

    Balls Rearrangement

    Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 1682 Accepted Submission(s): 634

    Problem Description
    Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the boxes from 0 to A-1. To find the balls easily, he puts the ball numbered x into the box numbered a if x = a mod A. Some day Bob buys B new boxes, and he wants to rearrange the balls from the old boxes to the new boxes. The new boxes are numbered from 0 to B-1. After the rearrangement, the ball numbered x should be in the box number b if x = b mod B.
    This work may be very boring, so he wants to know the cost before the rearrangement. If he moves a ball from the old box numbered a to the new box numbered b, the cost he considered would be |a-b|. The total cost is the sum of the cost to move every ball, and it is what Bob is interested in now.
     
    Input
    The first line of the input is an integer T, the number of test cases.(0<T<=50)
    Then T test case followed. The only line of each test case are three integers N, A and B.(1<=N<=1000000000, 1<=A,B<=100000).
     
    Output
    For each test case, output the total cost.
     
    Sample Input
    3 1000000000 1 1 8 2 4 11 5 3
     
    Sample Output
    0 8 16
     
    Source
     
    Recommend
    zhuyuanchen520
    唉,比赛的时候,一直想通过推出公式来,纠结在起过一个周期时,找到规律,其实,我们只要把有统一差值的一起算,不是统一差值的下次再算就已经很快了啊!
    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <string.h>
    using namespace std;
    __int64 gcd(__int64 a,__int64 b)
    {
        if(a==0)return b;
        return gcd(b%a,a);
    }
    __int64 solve(__int64 n,__int64 a,__int64 b)
    {
        __int64 sum=0,k1=0,k2=0,i=0,temp;
        while(i<n)
        {
            temp=min(a-k1,b-k2);
            i+=temp,sum+=temp*fabs(k1-k2);
            if(i>n)
            sum-=(i-n)*fabs(k1-k2);
            k1=(k1+temp)%a,k2=(k2+temp)%b;
        }
        return sum;
    }
    int main()
    {
        int tcase;
        __int64 n,m,a,b;
        scanf("%d",&tcase);
        while(tcase--)
        {
            scanf("%I64d%I64d%I64d",&n,&a,&b);
            m=a*b/gcd(a,b);
            if(n<m)
            {
                printf("%I64d
    ",solve(n,a,b));
            }
            else
                printf("%I64d
    ",n/m*solve(m,a,b)+solve(n%m,a,b));
        }
        return 0;
    }
    

  • 相关阅读:
    方法的重载
    this用法
    简单的随机数 代码和笔记
    java内存简单剖析
    day 28
    day 27
    day 26
    day 25
    day 24
    day 23
  • 原文地址:https://www.cnblogs.com/riskyer/p/3281322.html
Copyright © 2011-2022 走看看