zoukankan      html  css  js  c++  java
  • 【Python】Coding the Matrix:Week 5 Perspective Lab

    这个Lab的内容光是说明就有7页之巨,我反复看了很久才看懂一点点,Lab主要完成的是从不同坐标系表示之间变换的方法。


    原始的图片,从Camera basis的表示转换成WhiteBoard basis的表示


    里面的Problem 3是难点,Problem 4我没有完成,因为还缺少之前的代码,暂时不写。

    注意Problem 3中的vector h不能通过print(h)来获得,因为print会对浮点数进行四舍五入,导致答案错误。

     

    #from image_mat_util import *
    
    from mat import Mat
    from vec import Vec
    
    from solver import solve
    from matutil import *
    ## Task 1
    def move2board(v): 
        '''
        Input:
            - v: a vector with domain {'y1','y2','y3'}, the coordinate representation of a point q.
        Output:
            - A {'y1','y2','y3'}-vector z, the coordinate representation
              in whiteboard coordinates of the point p such that the line through the 
              origin and q intersects the whiteboard plane at p.
        '''
        return Vec({'y1','y2','y3'}, {k:v[k]/v['y3'] for k in v.D})
    
    ## Task 2
    def make_equations(x1, x2, w1, w2): 
        '''
        Input:
            - x1 & x2: photo coordinates of a point on the board
            - y1 & y2: whiteboard coordinates of a point on the board
        Output:
            - List [u,v] where u*h = 0 and v*h = 0
        '''
        domain = {(a, b) for a in {'y1', 'y2', 'y3'} for b in {'x1', 'x2', 'x3'}}
        u = Vec(domain, {('y3','x1'):w1*x1,('y3','x2'):w1*x2,('y3','x3'):w1,('y1','x1'):-1*x1,('y1','x2'):-x2,('y1','x3'):-1})
        v = Vec(domain, {('y3','x1'):w2*x1,('y3','x2'):w2*x2,('y3','x3'):w2,('y2','x1'):-1*x1,('y2','x2'):-x2,('y2','x3'):-1})
        return [u, v]
    
    
    ## Task 3
    x11=358
    x21=36
    w11=0
    w21=0
    x12=329
    x22=597
    w12=0
    w22=1
    x13=592
    x23=157
    w13=1
    w23=0
    x14=580
    x24=483
    w14=1
    w24=1
    [u1,v1]=make_equations(x11, x21, w11, w21)
    [u2,v2]=make_equations(x12, x22, w12, w22)
    [u3,v3]=make_equations(x13, x23, w13, w23)
    [u4,v4]=make_equations(x14, x24, w14, w24)
    w=Vec(u1.D,{('y1','x1'):1})
    b=Vec(range(9),{8:1})
    L=rowdict2mat([u1,v1,u2,v2,u3,v3,u4,v4,w])
    h=solve(L,b)
    H = Mat(({'y2', 'y3', 'y1'}, {'x1', 'x3', 'x2'}),h.f)
    
    
    ## Task 4
    def mat_move2board(Y):
        '''
        Input:
            - Y: Mat instance, each column of which is a 'y1', 'y2', 'y3' vector 
              giving the whiteboard coordinates of a point q.
        Output:
            - Mat instance, each column of which is the corresponding point in the
              whiteboard plane (the point of intersection with the whiteboard plane 
              of the line through the origin and q).
        '''
        pass
    


  • 相关阅读:
    Ansible 利用playbook批量部署mariadb
    Win10系统 安装Anaconda+TensorFlow+Keras
    keras中7大数据集datasets介绍
    新闻分类:多分类问题
    机器学习之SVM多分类
    机器学习之多分类学习
    机器学习(经典博客)
    机器学习实战
    多元函数的极值分析
    一元函数、多元函数的泰勒公式
  • 原文地址:https://www.cnblogs.com/riskyer/p/3283362.html
Copyright © 2011-2022 走看看