zoukankan      html  css  js  c++  java
  • Codeforces Round #198 (Div. 2) D. Bubble Sort Graph (转化为最长非降子序列)

    D. Bubble Sort Graph
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Iahub recently has learned Bubble Sort, an algorithm that is used to sort a permutation with n elements a1a2, ..., an in ascending order. He is bored of this so simple algorithm, so he invents his own graph. The graph (let's call it G) initially has n vertices and 0 edges. During Bubble Sort execution, edges appear as described in the following algorithm (pseudocode).

     

    procedure bubbleSortGraph()
        build a graph G with n vertices and 0 edges
        repeat
            swapped = false
            for i = 1 to n - 1 inclusive do:
                if a[i] > a[i + 1] then
                    add an undirected edge in G between a[i] and a[i + 1]
                    swap( a[i], a[i + 1] )
                    swapped = true
                end if
            end for
        until not swapped 
        /* repeat the algorithm as long as swapped value is true. */ 
    end procedure
    

     

    For a graph, an independent set is a set of vertices in a graph, no two of which are adjacent (so there are no edges between vertices of an independent set). A maximum independent set is an independent set which has maximum cardinality. Given the permutation, find the size of the maximum independent set of graph G, if we use such permutation as the premutation a in procedure bubbleSortGraph.

    Input

    The first line of the input contains an integer n (2 ≤ n ≤ 105). The next line contains n distinct integers a1a2, ..., an (1 ≤ ain).

    Output

    Output a single integer — the answer to the problem.

    Sample test(s)
    input
    3
    3 1 2
    
    output
    2
    
    Note

    Consider the first example. Bubble sort swaps elements 3 and 1. We add edge (1, 3). Permutation is now [1, 3, 2]. Then bubble sort swaps elements 3 and 2. We add edge (2, 3). Permutation is now sorted. We have a graph with 3 vertices and 2 edges (1, 3) and (2, 3). Its maximal independent set is [1, 2].


    思路: 

    问题等价于找一个最长非降子序列。


    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #define maxn 100005
    using namespace std;
    
    int n,m,ans,cnt;
    int a[maxn],dp[maxn];
    
    void solve()
    {
        int i,j,pos;
        dp[0]=0;
        cnt=0;
        for(i=1; i<=n; i++)
        {
            if(a[i]>=dp[cnt]) dp[++cnt]=a[i];
            else
            {
                pos=upper_bound(dp,dp+cnt+1,a[i])-dp;  // 找到>a[i]的第一次出现的位置
                printf("i:%d pos:%d
    ",i,pos);
                dp[pos]=a[i];low
            }
        }
    }
    int main()
    {
        int i,j;
        while(~scanf("%d",&n))
        {
            for(i=1; i<=n; i++)
            {
                scanf("%d",&a[i]);
            }
            solve();
            printf("%d
    ",cnt); // 长度即为cnt 但序列不是dp保存的序列 要输出序列的话应在更新ant时记录序列
        }
        return 0;
    }
    /*
    7
    2 3 3 5 3 2 4
    */
    





  • 相关阅读:
    盒子模型中问题
    outline
    高度自动相等方法
    正则表达式
    绝对定位 相对定位
    replace 使用函数作为第二参数
    float 浮动
    line-height 行高
    元素隐藏
    现代浏览器内部
  • 原文地址:https://www.cnblogs.com/riskyer/p/3293939.html
Copyright © 2011-2022 走看看