题意:给你一堆二维点,每个点有一些分数。
现在要从点(0 , 0 )出发,只能从标号小的点走到大的点,每个人有一个走的距离的限制,问最后能拿到的最高的分数,当然这个人从(0 , 0)出发还得回到( 0 , 0 )。
思路:用dp[i][j]表示在点i分数为j的最短距离,转移方程就是dp[i][j] = min(dp[i][j] , dp[k][j - w[k]] + Map[i][k]) 。
CODE:
#include <set> #include <map> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <string> #include <vector> #include <iomanip> #include <cstring> #include <iostream> #include <algorithm> #define Max 2505 #define FI first #define SE second #define ll __int64 #define PI acos(-1.0) #define inf 0x3fffffff #define LL(x) ( x << 1 ) #define bug puts("here") #define PII pair<int,int> #define RR(x) ( x << 1 | 1 ) #define mp(a,b) make_pair(a,b) #define mem(a,b) memset(a,b,sizeof(a)) #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) using namespace std; #define N 333 ll x[N] , y[N] , w[N] ; int n ; double Map[N][N] ; double dp[N][11111] ; double getD(int i , int j) { return sqrt(1.0 * (x[i] - x[j]) * (x[i] - x[j]) + 1.0 * (y[i] - y[j]) * (y[i] - y[j])) ; } int Asum = 0 ; int main() { int ca = 0 ; while(cin >> n , n ) { Asum = 0 ; for (int i = 1 ; i <= n ; i ++ ) { scanf("%I64d%I64d%I64d",&x[i] ,&y[i],&w[i]) ; Asum += w[i] ; } n ++ ; x[0] = y[0] = x[n] = y[n] = w[0] = w[n] = 0 ; for (int i = 0 ; i <= n ; i ++ ) { for (int j = 0 ; j <= n ; j ++ ) { Map[i][j] = getD(i , j) ; } } string name ; int lim ; printf("Race %d ",++ca) ; while(cin >> name >> lim) { if(name == "#")break ; for (int i = 0 ; i <= n ; i ++ ) { for (int j = 0 ; j <= Asum ; j ++ )dp[i][j] = inf ; dp[0][0] = 0 ; } for (int i = 1 ; i <= n ; i ++ ) { for (int j = 0 ; j <= Asum ; j ++ ) { for (int k = 0 ; k < i ; k ++ ) { if(w[k] > j)continue ; dp[i][j] = min(dp[i][j] , dp[k][j - w[k]] + Map[k][i]) ; } } } int ans = 0 ; for (int i = 0 ; i <= Asum ; i ++ ) { if(dp[n][i] <= lim)ans = max(ans , i) ; } printf("%s: %d ",name.c_str() ,ans) ; } } return 0 ; } /* 5 750 -800 30 1500 0 50 750 750 60 -1250 750 70 -1000 -500 50 Chris 7000 Karl 6500 Tania 5000 # 0 4 500 0 10 0 500 10 -500 0 10 0 -500 10 Hanny 2100 Lizzie 1800 # 0 0 */