zoukankan      html  css  js  c++  java
  • UVA 5875 DP

    题意:给你一堆二维点,每个点有一些分数。

    现在要从点(0 , 0 )出发,只能从标号小的点走到大的点,每个人有一个走的距离的限制,问最后能拿到的最高的分数,当然这个人从(0 , 0)出发还得回到( 0 , 0 )。

    思路:用dp[i][j]表示在点i分数为j的最短距离,转移方程就是dp[i][j] = min(dp[i][j] , dp[k][j - w[k]] + Map[i][k]) 。

    CODE:

    #include <set>
    #include <map>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <iomanip>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define Max 2505
    #define FI first
    #define SE second
    #define ll __int64
    #define PI acos(-1.0)
    #define inf 0x3fffffff
    #define LL(x) ( x << 1 )
    #define bug puts("here")
    #define PII pair<int,int>
    #define RR(x) ( x << 1 | 1 )
    #define mp(a,b) make_pair(a,b)
    #define mem(a,b) memset(a,b,sizeof(a))
    #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
    
    using namespace std;
    
    #define N 333
    ll x[N] , y[N] , w[N] ;
    int n ;
    double Map[N][N] ;
    double dp[N][11111] ;
    double getD(int i , int j) {
        return sqrt(1.0 * (x[i] - x[j]) * (x[i] - x[j]) + 1.0 * (y[i] - y[j]) * (y[i] - y[j])) ;
    }
    int Asum = 0 ;
    int main() {
        int ca = 0 ;
        while(cin >> n , n ) {
            Asum = 0 ;
            for (int i = 1 ; i <= n ; i ++ ) {
                scanf("%I64d%I64d%I64d",&x[i] ,&y[i],&w[i]) ;
                Asum += w[i] ;
            }
            n ++ ;
            x[0] = y[0] = x[n] = y[n] = w[0] = w[n] = 0 ;
            for (int i = 0 ; i <= n ; i ++ ) {
                for (int j = 0 ; j <= n ; j ++ ) {
                    Map[i][j] = getD(i , j) ;
                }
            }
            string name ;
            int lim ;
            printf("Race %d
    ",++ca) ;
            while(cin >> name >> lim) {
                if(name == "#")break ;
                for (int i = 0 ; i <= n ; i ++ ) {
                    for (int j = 0 ; j <= Asum ; j ++ )dp[i][j] = inf ;
                    dp[0][0] = 0 ;
                }
                for (int i = 1 ; i <= n ; i ++ ) {
                    for (int j = 0 ; j <= Asum ; j ++ ) {
                        for (int k = 0 ; k < i ; k ++ ) {
                            if(w[k] > j)continue ;
                            dp[i][j] = min(dp[i][j] , dp[k][j - w[k]] + Map[k][i]) ;
                        }
                    }
                }
                int ans = 0 ;
                for (int i = 0 ; i <= Asum ; i ++ ) {
                    if(dp[n][i] <= lim)ans = max(ans , i) ;
                }
                printf("%s: %d
    ",name.c_str() ,ans) ;
            }
        }
        return 0 ;
    }
    
    /*
    
    5
    750 -800 30
    1500 0 50
    750 750 60
    -1250 750 70
    -1000 -500 50
    Chris 7000
    Karl 6500
    Tania 5000
    # 0
    4
    500 0 10
    0 500 10
    -500 0 10
    0 -500 10
    Hanny 2100
    Lizzie 1800
    # 0
    0
    
    */
    


  • 相关阅读:
    垃圾回收机制,正则模块
    日常模块
    文件路径带有字符串的处理方法
    QT进制之间的相互转换
    4-7 selectors模块
    4-5 异步IO模型
    4-4 多路复用IO模型
    4-3 非阻塞IO
    4-2 阻塞IO
    4-1 IO模型介绍
  • 原文地址:https://www.cnblogs.com/riskyer/p/3299470.html
Copyright © 2011-2022 走看看