zoukankan      html  css  js  c++  java
  • hdu 4404 Worms(多边形与圆的交)

    求出爆炸点的坐标,就成了多边形与圆相交面积的模板题了。。。

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<fstream>
    #include<sstream>
    #include<vector>
    #include<string>
    #include<cstdio>
    #include<bitset>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<set>
    #define FF(i, a, b) for(int i=a; i<b; i++)
    #define FD(i, a, b) for(int i=a; i>=b; i--)
    #define REP(i, n) for(int i=0; i<n; i++)
    #define CLR(a, b) memset(a, b, sizeof(a))
    #define LL long long
    #define PB push_back
    #define eps 1e-10
    #define debug puts("**debug**")
    using namespace std;
    
    const int maxn = 110;
    const double PI = acos(-1);
    struct Point
    {
        double x, y;
        Point (double x=0, double y=0):x(x), y(y) {}
    };
    typedef Point Vector;
    struct Circle
    {
       Point c;
       double r;
       Circle() {}
       Circle(Point c, double r) : c(c), r(r) {}
       Point point(double a) { return Point(c.x+cos(a)*r, c.y+sin(a)*r); }
    };
    struct Line
    {
        Point p;
        Vector v;
        double ang;
        Line(){}
        Line(Point p, Vector v) : p(p), v(v) {ang = atan2(v.y, v.x); }
        Point point(double t)
        {
            return Point(p.x + t*v.x, p.y + t*v.y);
        }
        bool operator < (const Line& L) const
        {
            return ang < L.ang;
        }
    };
    
    template <class T> T sqr(T x) { return x * x;}
    Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
    bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
    int dcmp(double x)
    {
        if(fabs(x) < eps) return 0;
        return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){ return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;}
    
    double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
    double Length(Vector A) { return sqrt(Dot(A, A)); }
    double Angel(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
    double torad(double d) { return (d/180)*PI; }
    Vector vecunit(Vector x){ return x / Length(x);} //单位向量
    Vector normal(Vector x) { return Point(-x.y, x.x) / Length(x);} //垂直法向量
    Point GetIntersection(Line a, Line b) //线段交点
    {
        Vector u = a.p-b.p;
        double t = Cross(b.v, u) / Cross(a.v, b.v);
        return a.p + a.v*t;
    }
    bool OnSegment(Point p, Point a1, Point a2)
    {
        return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
    }
    
    bool InCircle(Point x, Circle c) { return dcmp(sqr(c.r) - sqr(Length(c.c - x))) >= 0;}
    bool OnCircle(Point x, Circle c) { return dcmp(sqr(c.r) - sqr(Length(c.c - x))) == 0;}
    double angle(Vector x) { return atan2(x.y, x.x);}
    
    //直线与圆交点
    int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol)
    {
        double a=L.v.x, b=L.p.x-C.c.x, c=L.v.y, d=L.p.y-C.c.y;
        double e=a*a+c*c, f=2*(a*b+c*d), g=b*b+d*d-C.r*C.r;
        double delta=f*f-4*e*g;
        if(dcmp(delta) < 0) return 0;
        if(dcmp(delta) == 0)
        {
            t1 = t2 = -f/(2*e); sol.PB(L.point(t1));
            return 1;
        }
        t1 = (-f-sqrt(delta))/(2*e); sol.PB(L.point(t1));
        t2 = (-f+sqrt(delta))/(2*e); sol.PB(L.point(t2));
        return 2;
    }
    
    //线段与圆的焦点
    int getSegCircleIntersection(Line L, Circle C, Point* sol) 
    {
        Vector nor = normal(L.v);
        Line pl = Line(C.c, nor);
        Point ip = GetIntersection(pl, L);
        double dis = Length(ip - C.c);
        if (dcmp(dis - C.r) > 0) return 0;
        Point dxy = vecunit(L.v) * sqrt(sqr(C.r) - sqr(dis));
        int ret = 0;
        sol[ret] = ip + dxy;
        if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
        sol[ret] = ip - dxy;
        if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
        return ret;
    }
    
    double SegCircleArea(Circle C, Point a, Point b) //线段切割圆
    {
        double a1 = angle(a - C.c);
        double a2 = angle(b - C.c);
        double da = fabs(a1 - a2);
        if (da > PI) da = PI * 2.0 - da;
        return dcmp(Cross(b - C.c, a - C.c)) * da * sqr(C.r) / 2.0;
    }
    
    double PolyCiclrArea(Circle C, Point *p, int n)//多边形与圆相交面积
    {
        double ret = 0.0;
        Point sol[2];
        p[n] = p[0];
        REP(i, n)
        {
            double t1, t2;
            int cnt = getSegCircleIntersection(Line(p[i], p[i+1]-p[i]), C, sol);
            if (cnt == 0)
            {
                if (!InCircle(p[i], C) || !InCircle(p[i+1], C)) ret += SegCircleArea(C, p[i], p[i+1]);
                else ret += Cross(p[i+1] - C.c, p[i] - C.c) / 2.0;
            }
            if (cnt == 1)
            {
                if (InCircle(p[i], C) && !InCircle(p[i+1], C)) ret += Cross(sol[0] - C.c, p[i] - C.c) / 2.0, ret += SegCircleArea(C, sol[0], p[i+1]);
                else ret += SegCircleArea(C, p[i], sol[0]), ret += Cross(p[i+1] - C.c, sol[0] - C.c) / 2.0;
            }
            if (cnt == 2)
            {
                if ((p[i] < p[i + 1]) ^ (sol[0] < sol[1])) swap(sol[0], sol[1]);
                ret += SegCircleArea(C, p[i], sol[0]);
                ret += Cross(sol[1] - C.c, sol[0] - C.c) / 2.0;
                ret += SegCircleArea(C, sol[1], p[i+1]);
            }
        }
        return fabs(ret);
    }
    
    int n;
    double x, y, v, ang, t, g, r;
    Circle C;
    Point p[maxn];
    
    int main()
    {
        while (scanf("%lf%lf%lf%lf%lf%lf%lf", &x, &y, &v, &ang, &t, &g, &r))
        {
          if(x == 0 && y == 0 && v == 0 && ang == 0 && t == 0 &&  g == 0 && r == 0) break;
          ang = torad(ang);
          C = Circle(Point(x + v*cos(ang)*t, y + v*sin(ang)*t - 0.5*g*t*t), r);
    
          scanf("%d", &n);
          REP(i, n) scanf("%lf%lf", &p[i].x, &p[i].y);
          printf("%.2f
    ", PolyCiclrArea(C, p, n));
        }
        return 0;
    }
    



  • 相关阅读:
    习题2.4 递增的整数序列链表的插入(15 分)浙大版《数据结构(第2版)》题目集
    杭电 KazaQ's Socks
    B. Beautiful Paintings
    java之接口
    java之模板方法设计模式
    java之抽象类
    java之final关键字
    java之匿名内部类
    jvaa之初始化块
    java之单例设计模式
  • 原文地址:https://www.cnblogs.com/riskyer/p/3303806.html
Copyright © 2011-2022 走看看