zoukankan      html  css  js  c++  java
  • MapReduce调度与执行原理之任务调度(续)

    前言 :本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教。本文不涉及Hadoop的架构设计,如有兴趣请参考相关书籍和文献。在梳 理过程中,我对一些感兴趣的源码也会逐行研究学习,以期强化基础。
    作者 :Jaytalent
    开始日期 :2013年9月9日
    参考资料:【1】《Hadoop技术内幕--深入解析MapReduce架构设计与实现原理》董西成
                      【2】   Hadoop 1.0.0 源码
                                【3】《Hadoop技术内幕--深入解析Hadoop Common和HDFS架构设计与实现原理》蔡斌 陈湘萍
    继续 上一篇文章的话题,说说调度器的任务选择机制。
    一个MapReduce作业的生命周期大体分为5个阶段 【1】
    1. 作业提交与初始化
    2.  任务调度与监控
    3. 任务运行环境准备
    4. 任务执行
    5. 作业完成
    当JobTracker收到了来自TaskTracker的心跳后,是如何选择任务的呢?是通过assignTasks方法。下面详细分析该方法。在分析之前,首先提一下Hadoop的调度器调度模型。通常情况下,Hadoop会以队列为单位管理作业和资源。有了队列就产生所谓三级调度模型:调度器依次选择一个队列,队列中的一个作业,作业中的一个任务,最终将任务分配给有空闲slot的TaskTracker。assignTasks的实现也遵循这个模型:
        Collection<JobInProgress> jobQueue = jobQueueJobInProgressListener.getJobQueue();
    对于FIFO调度器而言,队列即为对应监听器中使用的作业队列。然后,声明一个列表,用于保存选择的任务:
        // Assigned tasks
        List<Task> assignedTasks = new ArrayList<Task>();
    接下来,计算队列中正在运行的和等待运行的map和reduce任务的数量:
        // Compute (running + pending) map and reduce task numbers across pool
        int remainingReduceLoad = 0;
        int remainingMapLoad = 0;
        synchronized (jobQueue) {
          for (JobInProgress job : jobQueue) {
            if (job.getStatus().getRunState() == JobStatus.RUNNING) {
              remainingMapLoad += (job.desiredMaps() - job.finishedMaps());
              if (job.scheduleReduces()) {
                remainingReduceLoad += 
                  (job.desiredReduces() - job.finishedReduces());
              }
            }
          }
        }
    其中,job.scheduleReduces方法判断当前map任务的总体进度是否满足reduce任务开始调度的条件,map任务完成的比例是否超过变量mapred.reduce.slowstart.completed.maps的值,若超过则计算reduce任务的剩余任务数。接下来,计算map和reduce任务的负载因子:
        // Compute the 'load factor' for maps and reduces
        double mapLoadFactor = 0.0;
        if (clusterMapCapacity > 0) {
          mapLoadFactor = (double)remainingMapLoad / clusterMapCapacity;
        }
        double reduceLoadFactor = 0.0;
        if (clusterReduceCapacity > 0) {
          reduceLoadFactor = (double)remainingReduceLoad / clusterReduceCapacity;
        }
    map任务负载因子定义为当前剩余的(正在执行的和等待开始的)map任务的总数与集群总的map资源数(map slot数目)的商值。reduce任务负载因子同理。计算负载因子的目的是根据TaskTracker的负载情况和集群总的负载情况将所有任务均衡地调度到各个TaskTracker以便均衡地使用各个结点上的资源。根据这种思想,可以计算出某个TaskTracker当前可用的slot数目:
        final int trackerCurrentMapCapacity = 
          Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity), 
                                  trackerMapCapacity);
        int availableMapSlots = trackerCurrentMapCapacity - trackerRunningMaps;
        boolean exceededMapPadding = false;
        if (availableMapSlots > 0) {
          exceededMapPadding = 
            exceededPadding(true, clusterStatus, trackerMapCapacity);
        }
    由此可见,可用slot定义为:根据集群总体负载均衡还有多少slot应该可用的数目减去实际已经在用的slot数目。注意,exceededMapPadding表示是否有足够的slot预留给推测执行的任务。所谓推测执行,是Hadoop为了防止某些任务执行过慢,为一些较慢任务启动一个备份任务,让该任务做相同的事情,并最终选用最先成功运行完成的任务计算结果为最终结果。推测执行机制日后关注。下面就是任务选择过程:
        int numLocalMaps = 0;
        int numNonLocalMaps = 0;
        scheduleMaps:
        for (int i=0; i < availableMapSlots; ++i) {
          synchronized (jobQueue) {
            for (JobInProgress job : jobQueue) {
              if (job.getStatus().getRunState() != JobStatus.RUNNING) {
                continue;
              }
              Task t = null;
              // Try to schedule a node-local or rack-local Map task
              t = 
                job.obtainNewNodeOrRackLocalMapTask(taskTrackerStatus, 
                    numTaskTrackers, taskTrackerManager.getNumberOfUniqueHosts());
              if (t != null) {
                assignedTasks.add(t);
                ++numLocalMaps;
                // Don't assign map tasks to the hilt!
                // Leave some free slots in the cluster for future task-failures,
                // speculative tasks etc. beyond the highest priority job
                if (exceededMapPadding) {
                  break scheduleMaps;
                }
                // Try all jobs again for the next Map task 
                break;
              }
              // Try to schedule a node-local or rack-local Map task
              t = 
                job.obtainNewNonLocalMapTask(taskTrackerStatus, numTaskTrackers,
                                       taskTrackerManager.getNumberOfUniqueHosts());
              if (t != null) {
                assignedTasks.add(t);
                ++numNonLocalMaps;
                
                // We assign at most 1 off-switch or speculative task
                // This is to prevent TaskTrackers from stealing local-tasks
                // from other TaskTrackers.
                break scheduleMaps;
              }
            }
          }
        }
        int assignedMaps = assignedTasks.size();
    对于某个空闲的slot,从队列中选择一个正在执行的作业,并调用obtainNewNodeOrRackLocalMapTask方法获得一个具有数据本地性地任务。若找到了这样的任务,将其放入结果列表中,并检查刚才获得的exceedingMapPadding的值。若不满足,则跳出最外层循环,重新为每个slot分配任务,以期有新的空闲slot产生,从而满足推测执行的需求。当找到一个数据本地性任务后,马上跳出对队列的遍历,为下一个slot分配任务。
    若没有找到具有数据本地性的任务,就调用obtainNewNonLocalMapTask方法获取一个非本地性的任务。如果找到了这样的任务,就将其放入结果列表中,然后跳出最外层循环,重新为每个slot分配任务。也就是说,一旦找到了一个非本地性任务,那么不能再继续获取任务,防止对于其他slot来说具有本地性地任务被抢夺。
    这里解释一下数据本地性。在分布式环境中,为了减少任务执行过程中的网络传输开销,通常将任务调度到输入数据所在的计算节点,也就是让数据在本地进行计算 【1】 。Hadoop中数据本地性有三个等级:node-local(同节点),rack-local(同机架)和off-switch(跨机架)。选择任务时即按照上述顺序依次进行。
        int target = findNewMapTask(tts, clusterSize, numUniqueHosts, maxLevel, 
                                    status.mapProgress());
        if (target == -1) {
          return null;
        }
        Task result = maps[target].getTaskToRun(tts.getTrackerName());
        if (result != null) {
          addRunningTaskToTIP(maps[target], result.getTaskID(), tts, true);
          resetSchedulingOpportunities();
        }
        return result;
    其中,findNewMapTask方法的第四个参数指定了获取任务的本地性等级,maxLevel表示最高。在obtainNewNonLocalMapTask方法中则使用的是
    NON_LOCAL_CACHE_LEVEL。在findNewMapTask方法中可以看到,运行失败的任务总是被优先选择,让它们能够快速重新执行;然后按照数据本地性选择尚未运行的任务;最后是查找正在运行的任务,为较慢的任务启动备份(推测执行)。有兴趣可以看源码这里不展示了。
    对于reduce任务来说选择过程十分类似,只不过reduce任务不涉及数据本地性,因为它的输入来自map任务的输出,来自所有map任务的结点。
        synchronized (jobQueue) {
            for (JobInProgress job : jobQueue) {
              if (job.getStatus().getRunState() != JobStatus.RUNNING ||
                  job.numReduceTasks == 0) {
                continue;
              }
              Task t = 
                job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers, 
                                        taskTrackerManager.getNumberOfUniqueHosts()
                                        );
              if (t != null) {
                assignedTasks.add(t);
                break;
              }          
              // Don't assign reduce tasks to the hilt!
              // Leave some free slots in the cluster for future task-failures,
              // speculative tasks etc. beyond the highest priority job
              if (exceededReducePadding) {
                break;
              }
            }
          }
    注意,每一次心跳只分配一个reduce任务。
    最后,我们关注一下当要执行的任务获得以后,如何返回给TaskTracker,以及JobTracker下达的一些命令。
    重新来看心跳方法heartbeat。它的返回值是一个HeartbeatResponse类型,其中有一个重要的字段:
    TaskTrackerAction[] actions;
    这个数组就用于JobTracker向TaskTracker下达命令,包括执行刚刚选择的任务的指令。具体的命令种类有以下五种:
    1. ReinitTrackerAction
    2. LaunchTaskAction
    3. KillTaskAction
    4. KillJobAction
    5. CommitTaskAction
    两种情况下JobTracker会下达ReinitTrackerAction命令:丢失上次心跳应答信息或者丢失TaskTracker状态信息。这两种状态为不一致状态。
        short newResponseId = (short)(responseId + 1);
        status.setLastSeen(now);
        if (!processHeartbeat(status, initialContact, now)) {
          if (prevHeartbeatResponse != null) {
            trackerToHeartbeatResponseMap.remove(trackerName);
          }
          return new HeartbeatResponse(newResponseId, 
                       new TaskTrackerAction[] {new ReinitTrackerAction()});
        }
    LaunchTaskAction命令即包含了需要执行的任务。JobTracker在选择任务时首先选择的是辅助型任务,例如job-cleanup task,task-cleanup task和job-setup task。这些任务在调用assignTasks方法之前就已经选择,因此优先级最高。
        List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
        if (tasks == null ) {
          tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));
        }
        if (tasks != null) {
          for (Task task : tasks) {
            expireLaunchingTasks.addNewTask(task.getTaskID());
            actions.add(new LaunchTaskAction(task));
          }
        }
    KillTaskAction封装了需要杀死的任务。杀死的原因可能是任务失败,用户通过kill命令杀死等。KillJobAction封装了待清理的作业。清理的工作主要是删除临时目录。作业完成或失败时都会导致该作业被清理。最后,CommitTaskAction封装了需要提交的任务。Hadoop将一个成功运行完成的Task Attempt(一个任务的多个备份任务)结果文件从临时目录转移到最终目录的过程称为任务提交。后三种命令生成的代码如下:
        // Check for tasks to be killed
        List<TaskTrackerAction> killTasksList = getTasksToKill(trackerName);
        if (killTasksList != null) {
          actions.addAll(killTasksList);
        }
         
        // Check for jobs to be killed/cleanedup
        List<TaskTrackerAction> killJobsList = getJobsForCleanup(trackerName);
        if (killJobsList != null) {
          actions.addAll(killJobsList);
        }
    
        // Check for tasks whose outputs can be saved
        List<TaskTrackerAction> commitTasksList = getTasksToSave(status);
        if (commitTasksList != null) {
          actions.addAll(commitTasksList);
        }
    至此,任务调度功流程大体框架全部结束,接下来就是任务在TaskTracker上的具体执行过程了。请关注后续文章。













  • 相关阅读:
    Android导出jar包后的资源使用问题
    怎样设计接口?
    自己动手写shell之chgrp,chown,chmod
    妹子图太多怎么看才好,Swing来支招
    Etcd学习(一)安装和.NETclient測试
    js中return false,return,return true的使用方法及区别
    C语言运算符的优先级
    运动物体检测与跟踪——累积权重构建背景模型
    推理集 —— 现场的观察
    推理集 —— 现场的观察
  • 原文地址:https://www.cnblogs.com/riskyer/p/3322961.html
Copyright © 2011-2022 走看看