题意:很简单,问一个字符串的第k大的子串是谁。
解题思路:后缀数组。先预处理一遍,把能算的都算出来。将后缀按sa排序,假如我们知道答案在那个区间范围内了(假设为[l,r]),那么我们算下这个区间内的lcp的最小值(设最小值的位置为mid,大小为x),如果x*(r-l+1)>=k,那么,答案就是这个区间的lcp的最小值的某一部分(具体是哪一部分,画个图稍微算下就出来了)。如果x * ( r - l + 1 ) < k 那么我们分两种情况考虑,如果[l,mid]区间范围内的字符串总数大于等于k,那么把区间范围缩小到[l,mid],否则范围缩小到[mid+1,r]。一点点的逼近答案就可以了。
#include<stdio.h> #include<string.h> #include<algorithm> #define ll __int64 using namespace std ; const int maxn = 111111 ; int min ( int a , int b ) { return a < b ? a : b ; } int f[maxn] ; int dp[22][maxn] ; ll sum[maxn] ; char s1[maxn] ; int s[maxn] ; struct Suf{ int wa[maxn] , wb[maxn] , ws[maxn] , wv[maxn] ; int rank[maxn] , hei[maxn] , sa[maxn] ; int cmp ( int *r , int i , int j , int l ){ return r[i] == r[j] && r[i+l] == r[j+l] ; } void da ( int *r , int n , int m ){ int *x = wa , *y = wb , *t ; int i , j , k , p ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]=r[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[i]]] = i ; for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p ) { for ( p = 0 , i = n - j ; i < n ; i ++ ) y[p++] = i ; for ( i = 0 ; i < n ; i ++ ) if ( sa[i] >= j ) y[p++] = sa[i] - j ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[y[i]]]] = y[i] ; for ( t = x , x = y , y = t ,x[sa[0]] = 0 , p = 1 , i = 1 ; i < n ; i ++ ) x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p - 1 : p ++ ; } k = 0 ; for ( i = 1 ; i < n ; i ++ ) rank[sa[i]] = i ; for ( i = 0 ; i < n - 1 ; hei[rank[i++]] = k ) for ( k ? k -- : 0 , j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k ++ ) ; } int min_hei ( int x , int y ) { return ( hei[x] < hei[y] ? x : y ) ; } void rmq ( int n ) { int i , j ; for ( i = 1 ; i <= n ; i ++ ) dp[0][i] = i ; for ( i = 1 ; i <= 20 ; i ++ ) for ( j = 1 ; j + ( 1 << i ) - 1 <= n ; j ++ ) dp[i][j] = min_hei ( dp[i-1][j] , dp[i-1][j+(1<<(i-1))] ) ; } int query ( int l , int r ) { if ( l > r ) swap ( l , r ) ; l ++ ;//要从height[l+1]到height[r]之间求最小值 if ( l == r ) return dp[0][l] ; int k = r - l + 1 ; return min_hei ( dp[f[k]][l] , dp[f[k]][r-(1<<f[k])+1] ) ; } void solve ( int n , ll k ) { rmq ( n ) ; int l = 1 , r = n , i; sum[0] = 0 ; for ( i = 1 ; i <= n ; i ++ ) sum[i] = sum[i-1] + n - sa[i] ; int h = 0 ; int pos = 0 , len ; while ( l < r ) { int mid = query ( l , r ) - 1 ; // printf ( "l = %d , r = %d mid = %d , k = %I64d , fuck = %d " , l , r , mid , k , ( hei[mid] - h ) * ( r - l + 1 ) ) ; if ( k <= (ll) ( hei[mid+1] - h ) * ( r - l + 1 ) ) { pos = l ; len = h + k / ( r - l + 1 ) + ( k % ( r - l + 1 ) != 0 ) ; // printf ( "pos = %d , l = %d " , pos , len ) ; break ; } k -= (ll) (hei[mid+1] - h ) * ( r - l + 1 ) ; if ( k <= sum[mid] - sum[l-1] - (ll) hei[mid+1] * ( mid - l + 1 ) ) { r = mid ; } else { k -= sum[mid] - sum[l-1] - (ll) hei[mid+1] * ( mid - l + 1 ) ; l = mid + 1 ; } h = hei[mid+1] ; } if ( !pos ) pos = l , len = h + k ; for ( i = 0 ; i < len ; i ++ ) printf ( "%c" , s[sa[pos]+i] ) ; puts ( "" ) ; } } arr ; int main () { int cas , i , j , ca = 0 ; ll m ; j = 0 ; for ( i = 1 ; i < maxn - 1111 ; i ++ ) { if ( i > 1 << j + 1 ) j ++ ; f[i] = j ; } scanf ( "%d" , &cas ) ; while ( cas -- ) { scanf ( "%s" , s1 ) ; scanf ( "%I64d" , &m ) ; int len = strlen ( s1 ) ; for ( i = 0 ; i < len ; i++ ) s[i] = s1[i] ; s[len] = 0 ; arr.da ( s , len + 1 , 411 ) ; printf ( "Case %d: " , ++ ca ) ; arr.solve ( len , m ) ; } } /* 10000 ddff 9 */