Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 86958 Accepted Submission(s): 20667
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
Author
CHEN, Shunbao
Source
解题思路:注意是对7求余,又因为 f[n] 只与f[n-1]与f[n-2]有关,所以当f[n-1]与f[n-2]出现重复时就是一个循环周期出现了,所以这题很好解了,分析一下循环周期的话,f[n-1]与f[n-2]最多49个状态必然出现重复了。
代码:
#include <iostream> #include <cstdio> #include <cstdlib> using namespace std; int a,b,n,f[110],t,pos; void ini(){ f[1]=1,f[2]=1; pos=n,t=n; for(int i=3;i<=n;i++){ f[i]=(a*f[i-1]+b*f[i-2])%7; for(int j=i-1;j>=2;j--){ if(f[j]==f[i] && f[j-1]==f[i-1]){ t=i-j; pos=j; return; } } } } void computing(){ if(n<=pos+t) cout<<f[n]<<endl; else cout<<f[(n-pos)%t+pos]<<endl; } int main(){ while(scanf("%d%d%d",&a,&b,&n)!=EOF && (a||b||n)){ ini(); computing(); } return 0; }