zoukankan      html  css  js  c++  java
  • hdu 3664 Permutation Counting(水DP)

    Permutation Counting

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1171    Accepted Submission(s): 587

    Problem Description
    Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the amount of elements where ai > i. For example, the E-value of permutation {1, 3, 2, 4} is 1, while the E-value of {4, 3, 2, 1} is 2. You are requested to find how many permutations of {1, 2, …, N} whose E-value is exactly k.
     
    Input
    There are several test cases, and one line for each case, which contains two integers, N and k. (1 <= N <= 1000, 0 <= k <= N).
     
    Output
    Output one line for each case. For the answer may be quite huge, you need to output the answer module 1,000,000,007.
     
    Sample Input
    3 0 3 1
     
    Sample Output
    1 4
    Hint
    There is only one permutation with E-value 0: {1,2,3}, and there are four permutations with E-value 1: {1,3,2}, {2,1,3}, {3,1,2}, {3,2,1}
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:   3661  3665  3668  3669  3667 
      题意:
    给你一个n和k。问你有多少种数字序列满足有k个数字比该数字对应的下标大。1到n中每个数字出现且出现一次。
    比如数字序列3,4,1,2。其中3,4,比对应下标大。
    思路:
    有点类似错排公式。dp[i][j]表示用到1-i的数字。且有j个数字比下标大的方法数。那么
    dp[i][j]=(j+1)*dp[i-1][j]+(i-j)*dp[i-1][j-1]。
    公式很简单。当i放在dp[i-1][j]的j个位置或就放在第i个位置时。比下标大的数(E数)不会增加。dp[i][j]=(j+1)*dp[i-1][j]。
    而当第i个数放到dp[i-1][j-1]的(i-1)-(j-1)个位置上时。E数会在dp[i-1][j-1]的基础上增加一个。dp[i][j]=(i-j)*dp[i-1][j-1]。
    开始看到答案最多为1000000006所以用int存。结果wa了一发。因为在和(j+1)乘时就溢出了。所以要用__int64存。
    详细见代码:
    #include<algorithm>
    #include<iostream>
    #include<string.h>
    #include<sstream>
    #include<stdio.h>
    #include<math.h>
    #include<vector>
    #include<string>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    const int INF=0x3f3f3f3f;
    const int maxn=100010;
    const int mod=1000000007;
    __int64 dp[1010][1010];
    int main()
    {
        int i,j,n,k;
    
        for(i=1;i<=1000;i++)
        {
            dp[i][0]=1;
            dp[i][i]=0;
            for(j=1;j<i;j++)
                dp[i][j]=((j+1)*dp[i-1][j]+(i-j)*dp[i-1][j-1])%mod;
        }
        while(~scanf("%d%d",&n,&k))
            printf("%I64d
    ",dp[n][k]);
        return 0;
    }
    


  • 相关阅读:
    Java反射机制DOME
    Contos7 装bcm4312无线网卡驱动
    windows8.1+centos7双系统(装完centos后无win8引导)
    request+response
    HTTP协议+servlet配置
    类加载和反射
    线程池+线程安全
    IO流之Properties(String键值对)+序列流+打印流+commons-IO(最终流程)
    IO流之字节流 +字符流 (复制文件)
    IO流
  • 原文地址:https://www.cnblogs.com/riskyer/p/3400333.html
Copyright © 2011-2022 走看看